SU-FMI at SemEval-2024 Task 5: From BERT Fine-Tuning to LLM Prompt Engineering - Approaches in Legal Argument Reasoning

Kristiyan Krumov, Svetla Boytcheva, Ivan Koytchev


Abstract
This paper presents our approach and findings for SemEval-2024 Task 5, focusing on legal argument reasoning. We explored the effectiveness of fine-tuning pre-trained BERT models and the innovative application of large language models (LLMs) through prompt engineering in the context of legal texts. Our methodology involved a combination of techniques to address the challenges posed by legal language processing, including handling long texts and optimizing natural language understanding (NLU) capabilities for the legal domain. Our contributions were validated by achieving a third-place ranking on the SemEval 2024 Task 5 Leaderboard. The results underscore the potential of LLMs and prompt engineering in enhancing legal reasoning tasks, offering insights into the evolving landscape of NLU technologies within the legal field.
Anthology ID:
2024.semeval-1.235
Volume:
Proceedings of the 18th International Workshop on Semantic Evaluation (SemEval-2024)
Month:
June
Year:
2024
Address:
Mexico City, Mexico
Editors:
Atul Kr. Ojha, A. Seza Doğruöz, Harish Tayyar Madabushi, Giovanni Da San Martino, Sara Rosenthal, Aiala Rosá
Venue:
SemEval
SIG:
SIGLEX
Publisher:
Association for Computational Linguistics
Note:
Pages:
1652–1658
Language:
URL:
https://aclanthology.org/2024.semeval-1.235
DOI:
10.18653/v1/2024.semeval-1.235
Bibkey:
Cite (ACL):
Kristiyan Krumov, Svetla Boytcheva, and Ivan Koytchev. 2024. SU-FMI at SemEval-2024 Task 5: From BERT Fine-Tuning to LLM Prompt Engineering - Approaches in Legal Argument Reasoning. In Proceedings of the 18th International Workshop on Semantic Evaluation (SemEval-2024), pages 1652–1658, Mexico City, Mexico. Association for Computational Linguistics.
Cite (Informal):
SU-FMI at SemEval-2024 Task 5: From BERT Fine-Tuning to LLM Prompt Engineering - Approaches in Legal Argument Reasoning (Krumov et al., SemEval 2024)
Copy Citation:
PDF:
https://aclanthology.org/2024.semeval-1.235.pdf
Supplementary material:
 2024.semeval-1.235.SupplementaryMaterial.zip
Supplementary material:
 2024.semeval-1.235.SupplementaryMaterial.txt