Robust Guidance for Unsupervised Data Selection: Capturing Perplexing Named Entities for Domain-Specific Machine Translation

Seunghyun Ji, Hagai Raja Sinulingga, Darongsae Kwon


Abstract
Low-resourced data presents a significant challenge for neural machine translation. In most cases, the low-resourced environment is caused by high costs due to the need for domain experts or the lack of language experts. Therefore, identifying the most training-efficient data within an unsupervised setting emerges as a practical strategy. Recent research suggests that such effective data can be identified by selecting ‘appropriately complex data’ based on its volume, providing strong intuition for unsupervised data selection. However, we have discovered that establishing criteria for unsupervised data selection remains a challenge, as the ‘appropriate level of difficulty’ may vary depending on the data domain. We introduce a novel unsupervised data selection method named ‘Capturing Perplexing Named Entities,’ which leverages the maximum inference entropy in translated named entities as a metric for selection. When tested with the ‘Korean-English Parallel Corpus of Specialized Domains,’ our method served as robust guidance for identifying training-efficient data across different domains, in contrast to existing methods.
Anthology ID:
2024.sigul-1.37
Volume:
Proceedings of the 3rd Annual Meeting of the Special Interest Group on Under-resourced Languages @ LREC-COLING 2024
Month:
May
Year:
2024
Address:
Torino, Italia
Editors:
Maite Melero, Sakriani Sakti, Claudia Soria
Venues:
SIGUL | WS
SIG:
Publisher:
ELRA and ICCL
Note:
Pages:
307–317
Language:
URL:
https://aclanthology.org/2024.sigul-1.37
DOI:
Bibkey:
Cite (ACL):
Seunghyun Ji, Hagai Raja Sinulingga, and Darongsae Kwon. 2024. Robust Guidance for Unsupervised Data Selection: Capturing Perplexing Named Entities for Domain-Specific Machine Translation. In Proceedings of the 3rd Annual Meeting of the Special Interest Group on Under-resourced Languages @ LREC-COLING 2024, pages 307–317, Torino, Italia. ELRA and ICCL.
Cite (Informal):
Robust Guidance for Unsupervised Data Selection: Capturing Perplexing Named Entities for Domain-Specific Machine Translation (Ji et al., SIGUL-WS 2024)
Copy Citation:
PDF:
https://aclanthology.org/2024.sigul-1.37.pdf