@inproceedings{leoni-etal-2024-solving,
title = "Solving Failure Modes in the Creation of Trustworthy Language Technologies",
author = "Leoni, Gianna and
Steven, Lee and
Keith, T{\={u}}reiti and
Mahelona, Keoni and
Jones, Peter-Lucas and
Duncan, Suzanne",
editor = "Melero, Maite and
Sakti, Sakriani and
Soria, Claudia",
booktitle = "Proceedings of the 3rd Annual Meeting of the Special Interest Group on Under-resourced Languages @ LREC-COLING 2024",
month = may,
year = "2024",
address = "Torino, Italia",
publisher = "ELRA and ICCL",
url = "https://aclanthology.org/2024.sigul-1.39/",
pages = "325--330",
abstract = "To produce high-quality Natural Language Processing (NLP) technologies for low-resource languages, authentic leadership and participation from the low-resource language community is crucial. This reduces chances of bias, surveillance and the inclusion of inaccurate data that can negatively impact output in language technologies. It also ensures that decision-making throughout the pipeline of work centres on the language community rather than only prioritising metrics. The NLP building process involves a range of steps and decisions to ensure the production of successful models and outputs. Rarely does a model perform as expected or desired the first time it is deployed for testing, resulting in the need for re-assessment and re-deployment. This paper discusses the process involved in solving failure modes for a M{\={a}}ori language automatic speech recognition (ASR) model. It explains how the data is curated and how language and data specialists offer unparalleled insight into the debugging process because of their knowledge of the data. This expertise has a significant influence on decision-making to ensure the entire pipeline is embedded in ethical practice and the work is culturally appropriate for the M{\={a}}ori language community thus creating trustworthy language technology."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="leoni-etal-2024-solving">
<titleInfo>
<title>Solving Failure Modes in the Creation of Trustworthy Language Technologies</title>
</titleInfo>
<name type="personal">
<namePart type="given">Gianna</namePart>
<namePart type="family">Leoni</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lee</namePart>
<namePart type="family">Steven</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tūreiti</namePart>
<namePart type="family">Keith</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Keoni</namePart>
<namePart type="family">Mahelona</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Peter-Lucas</namePart>
<namePart type="family">Jones</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Suzanne</namePart>
<namePart type="family">Duncan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 3rd Annual Meeting of the Special Interest Group on Under-resourced Languages @ LREC-COLING 2024</title>
</titleInfo>
<name type="personal">
<namePart type="given">Maite</namePart>
<namePart type="family">Melero</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sakriani</namePart>
<namePart type="family">Sakti</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Claudia</namePart>
<namePart type="family">Soria</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>ELRA and ICCL</publisher>
<place>
<placeTerm type="text">Torino, Italia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>To produce high-quality Natural Language Processing (NLP) technologies for low-resource languages, authentic leadership and participation from the low-resource language community is crucial. This reduces chances of bias, surveillance and the inclusion of inaccurate data that can negatively impact output in language technologies. It also ensures that decision-making throughout the pipeline of work centres on the language community rather than only prioritising metrics. The NLP building process involves a range of steps and decisions to ensure the production of successful models and outputs. Rarely does a model perform as expected or desired the first time it is deployed for testing, resulting in the need for re-assessment and re-deployment. This paper discusses the process involved in solving failure modes for a Māori language automatic speech recognition (ASR) model. It explains how the data is curated and how language and data specialists offer unparalleled insight into the debugging process because of their knowledge of the data. This expertise has a significant influence on decision-making to ensure the entire pipeline is embedded in ethical practice and the work is culturally appropriate for the Māori language community thus creating trustworthy language technology.</abstract>
<identifier type="citekey">leoni-etal-2024-solving</identifier>
<location>
<url>https://aclanthology.org/2024.sigul-1.39/</url>
</location>
<part>
<date>2024-05</date>
<extent unit="page">
<start>325</start>
<end>330</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Solving Failure Modes in the Creation of Trustworthy Language Technologies
%A Leoni, Gianna
%A Steven, Lee
%A Keith, Tūreiti
%A Mahelona, Keoni
%A Jones, Peter-Lucas
%A Duncan, Suzanne
%Y Melero, Maite
%Y Sakti, Sakriani
%Y Soria, Claudia
%S Proceedings of the 3rd Annual Meeting of the Special Interest Group on Under-resourced Languages @ LREC-COLING 2024
%D 2024
%8 May
%I ELRA and ICCL
%C Torino, Italia
%F leoni-etal-2024-solving
%X To produce high-quality Natural Language Processing (NLP) technologies for low-resource languages, authentic leadership and participation from the low-resource language community is crucial. This reduces chances of bias, surveillance and the inclusion of inaccurate data that can negatively impact output in language technologies. It also ensures that decision-making throughout the pipeline of work centres on the language community rather than only prioritising metrics. The NLP building process involves a range of steps and decisions to ensure the production of successful models and outputs. Rarely does a model perform as expected or desired the first time it is deployed for testing, resulting in the need for re-assessment and re-deployment. This paper discusses the process involved in solving failure modes for a Māori language automatic speech recognition (ASR) model. It explains how the data is curated and how language and data specialists offer unparalleled insight into the debugging process because of their knowledge of the data. This expertise has a significant influence on decision-making to ensure the entire pipeline is embedded in ethical practice and the work is culturally appropriate for the Māori language community thus creating trustworthy language technology.
%U https://aclanthology.org/2024.sigul-1.39/
%P 325-330
Markdown (Informal)
[Solving Failure Modes in the Creation of Trustworthy Language Technologies](https://aclanthology.org/2024.sigul-1.39/) (Leoni et al., SIGUL 2024)
ACL