@inproceedings{marmol-romero-etal-2024-environmental,
title = "Environmental Impact Measurement in the {M}ental{R}isk{ES} Evaluation Campaign",
author = "M{\'a}rmol Romero, Alba M. and
Moreno-Mu{\~n}oz, Adri{\'a}n and
Plaza-del-Arco, Flor Miriam and
Molina Gonz{\'a}lez, M. Dolores and
Montejo-R{\'a}ez, Arturo",
editor = "Gaspari, Federico and
Moorkens, Joss and
Aldabe, Itziar and
Farwell, Aritz and
Altuna, Begona and
Piperidis, Stelios and
Rehm, Georg and
Rigau, German",
booktitle = "Proceedings of the Second International Workshop Towards Digital Language Equality (TDLE): Focusing on Sustainability @ LREC-COLING 2024",
month = may,
year = "2024",
address = "Torino, Italia",
publisher = "ELRA and ICCL",
url = "https://aclanthology.org/2024.tdle-1.6",
pages = "61--72",
abstract = "With the rise of Large Language Models (LLMs), the NLP community is increasingly aware of the environmental consequences of model development due to the energy consumed for training and running these models. This study investigates the energy consumption and environmental impact of systems participating in the MentalRiskES shared task, at the Iberian Language Evaluation Forum (IberLEF) in the year 2023, which focuses on early risk identification of mental disorders in Spanish comments. Participants were asked to submit, for each prediction, a set of efficiency metrics, being carbon dioxide emissions among them. We conduct an empirical analysis of the data submitted considering model architecture, task complexity, and dataset characteristics, covering a spectrum from traditional Machine Learning (ML) models to advanced LLMs. Our findings contribute to understanding the ecological footprint of NLP systems and advocate for prioritizing environmental impact assessment in shared tasks to foster sustainability across diverse model types and approaches, being evaluation campaigns an adequate framework for this kind of analysis.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="marmol-romero-etal-2024-environmental">
<titleInfo>
<title>Environmental Impact Measurement in the MentalRiskES Evaluation Campaign</title>
</titleInfo>
<name type="personal">
<namePart type="given">Alba</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Mármol Romero</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Adrián</namePart>
<namePart type="family">Moreno-Muñoz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Flor</namePart>
<namePart type="given">Miriam</namePart>
<namePart type="family">Plaza-del-Arco</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">M</namePart>
<namePart type="given">Dolores</namePart>
<namePart type="family">Molina González</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Arturo</namePart>
<namePart type="family">Montejo-Ráez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Second International Workshop Towards Digital Language Equality (TDLE): Focusing on Sustainability @ LREC-COLING 2024</title>
</titleInfo>
<name type="personal">
<namePart type="given">Federico</namePart>
<namePart type="family">Gaspari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joss</namePart>
<namePart type="family">Moorkens</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Itziar</namePart>
<namePart type="family">Aldabe</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aritz</namePart>
<namePart type="family">Farwell</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Begona</namePart>
<namePart type="family">Altuna</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stelios</namePart>
<namePart type="family">Piperidis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Georg</namePart>
<namePart type="family">Rehm</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">German</namePart>
<namePart type="family">Rigau</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>ELRA and ICCL</publisher>
<place>
<placeTerm type="text">Torino, Italia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>With the rise of Large Language Models (LLMs), the NLP community is increasingly aware of the environmental consequences of model development due to the energy consumed for training and running these models. This study investigates the energy consumption and environmental impact of systems participating in the MentalRiskES shared task, at the Iberian Language Evaluation Forum (IberLEF) in the year 2023, which focuses on early risk identification of mental disorders in Spanish comments. Participants were asked to submit, for each prediction, a set of efficiency metrics, being carbon dioxide emissions among them. We conduct an empirical analysis of the data submitted considering model architecture, task complexity, and dataset characteristics, covering a spectrum from traditional Machine Learning (ML) models to advanced LLMs. Our findings contribute to understanding the ecological footprint of NLP systems and advocate for prioritizing environmental impact assessment in shared tasks to foster sustainability across diverse model types and approaches, being evaluation campaigns an adequate framework for this kind of analysis.</abstract>
<identifier type="citekey">marmol-romero-etal-2024-environmental</identifier>
<location>
<url>https://aclanthology.org/2024.tdle-1.6</url>
</location>
<part>
<date>2024-05</date>
<extent unit="page">
<start>61</start>
<end>72</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Environmental Impact Measurement in the MentalRiskES Evaluation Campaign
%A Mármol Romero, Alba M.
%A Moreno-Muñoz, Adrián
%A Plaza-del-Arco, Flor Miriam
%A Molina González, M. Dolores
%A Montejo-Ráez, Arturo
%Y Gaspari, Federico
%Y Moorkens, Joss
%Y Aldabe, Itziar
%Y Farwell, Aritz
%Y Altuna, Begona
%Y Piperidis, Stelios
%Y Rehm, Georg
%Y Rigau, German
%S Proceedings of the Second International Workshop Towards Digital Language Equality (TDLE): Focusing on Sustainability @ LREC-COLING 2024
%D 2024
%8 May
%I ELRA and ICCL
%C Torino, Italia
%F marmol-romero-etal-2024-environmental
%X With the rise of Large Language Models (LLMs), the NLP community is increasingly aware of the environmental consequences of model development due to the energy consumed for training and running these models. This study investigates the energy consumption and environmental impact of systems participating in the MentalRiskES shared task, at the Iberian Language Evaluation Forum (IberLEF) in the year 2023, which focuses on early risk identification of mental disorders in Spanish comments. Participants were asked to submit, for each prediction, a set of efficiency metrics, being carbon dioxide emissions among them. We conduct an empirical analysis of the data submitted considering model architecture, task complexity, and dataset characteristics, covering a spectrum from traditional Machine Learning (ML) models to advanced LLMs. Our findings contribute to understanding the ecological footprint of NLP systems and advocate for prioritizing environmental impact assessment in shared tasks to foster sustainability across diverse model types and approaches, being evaluation campaigns an adequate framework for this kind of analysis.
%U https://aclanthology.org/2024.tdle-1.6
%P 61-72
Markdown (Informal)
[Environmental Impact Measurement in the MentalRiskES Evaluation Campaign](https://aclanthology.org/2024.tdle-1.6) (Mármol Romero et al., TDLE-WS 2024)
ACL
- Alba M. Mármol Romero, Adrián Moreno-Muñoz, Flor Miriam Plaza-del-Arco, M. Dolores Molina González, and Arturo Montejo-Ráez. 2024. Environmental Impact Measurement in the MentalRiskES Evaluation Campaign. In Proceedings of the Second International Workshop Towards Digital Language Equality (TDLE): Focusing on Sustainability @ LREC-COLING 2024, pages 61–72, Torino, Italia. ELRA and ICCL.