@inproceedings{tao-etal-2024-making,
title = "Making a Long Story Short in Conversation Modeling",
author = "Tao, Yufei and
Mines, Tiernan and
Agrawal, Ameeta",
editor = {Hosseini-Kivanani, Nina and
H{\"o}hn, Sviatlana and
Anastasiou, Dimitra and
Migge, Bettina and
Soltan, Angela and
Dippold, Doris and
Kamlovskaya, Ekaterina and
Philippy, Fred},
booktitle = "Proceedings of the 1st Worskhop on Towards Ethical and Inclusive Conversational AI: Language Attitudes, Linguistic Diversity, and Language Rights (TEICAI 2024)",
month = mar,
year = "2024",
address = "St Julians, Malta",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.teicai-1.7/",
pages = "42--49",
abstract = "Conversation systems accommodate diverse users with unique personalities and distinct writing styles. Within the domain of multi-turn dialogue modeling, this work studies the impact of varied utterance lengths on the quality of subsequent responses generated by conversation models. Using GPT-3 as the base model, multiple dialogue datasets, and several metrics, we conduct a thorough exploration of this aspect of conversational models. Our analysis sheds light on the complex relationship between utterance lengths and the quality of follow-up responses generated by dialogue systems. Empirical findings suggests that, for certain types of conversations, utterance lengths can be reduced by up to 72{\%} without any noticeable difference in the quality of follow-up responses."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="tao-etal-2024-making">
<titleInfo>
<title>Making a Long Story Short in Conversation Modeling</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yufei</namePart>
<namePart type="family">Tao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tiernan</namePart>
<namePart type="family">Mines</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ameeta</namePart>
<namePart type="family">Agrawal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-03</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 1st Worskhop on Towards Ethical and Inclusive Conversational AI: Language Attitudes, Linguistic Diversity, and Language Rights (TEICAI 2024)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nina</namePart>
<namePart type="family">Hosseini-Kivanani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sviatlana</namePart>
<namePart type="family">Höhn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dimitra</namePart>
<namePart type="family">Anastasiou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bettina</namePart>
<namePart type="family">Migge</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Angela</namePart>
<namePart type="family">Soltan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Doris</namePart>
<namePart type="family">Dippold</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Kamlovskaya</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fred</namePart>
<namePart type="family">Philippy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">St Julians, Malta</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Conversation systems accommodate diverse users with unique personalities and distinct writing styles. Within the domain of multi-turn dialogue modeling, this work studies the impact of varied utterance lengths on the quality of subsequent responses generated by conversation models. Using GPT-3 as the base model, multiple dialogue datasets, and several metrics, we conduct a thorough exploration of this aspect of conversational models. Our analysis sheds light on the complex relationship between utterance lengths and the quality of follow-up responses generated by dialogue systems. Empirical findings suggests that, for certain types of conversations, utterance lengths can be reduced by up to 72% without any noticeable difference in the quality of follow-up responses.</abstract>
<identifier type="citekey">tao-etal-2024-making</identifier>
<location>
<url>https://aclanthology.org/2024.teicai-1.7/</url>
</location>
<part>
<date>2024-03</date>
<extent unit="page">
<start>42</start>
<end>49</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Making a Long Story Short in Conversation Modeling
%A Tao, Yufei
%A Mines, Tiernan
%A Agrawal, Ameeta
%Y Hosseini-Kivanani, Nina
%Y Höhn, Sviatlana
%Y Anastasiou, Dimitra
%Y Migge, Bettina
%Y Soltan, Angela
%Y Dippold, Doris
%Y Kamlovskaya, Ekaterina
%Y Philippy, Fred
%S Proceedings of the 1st Worskhop on Towards Ethical and Inclusive Conversational AI: Language Attitudes, Linguistic Diversity, and Language Rights (TEICAI 2024)
%D 2024
%8 March
%I Association for Computational Linguistics
%C St Julians, Malta
%F tao-etal-2024-making
%X Conversation systems accommodate diverse users with unique personalities and distinct writing styles. Within the domain of multi-turn dialogue modeling, this work studies the impact of varied utterance lengths on the quality of subsequent responses generated by conversation models. Using GPT-3 as the base model, multiple dialogue datasets, and several metrics, we conduct a thorough exploration of this aspect of conversational models. Our analysis sheds light on the complex relationship between utterance lengths and the quality of follow-up responses generated by dialogue systems. Empirical findings suggests that, for certain types of conversations, utterance lengths can be reduced by up to 72% without any noticeable difference in the quality of follow-up responses.
%U https://aclanthology.org/2024.teicai-1.7/
%P 42-49
Markdown (Informal)
[Making a Long Story Short in Conversation Modeling](https://aclanthology.org/2024.teicai-1.7/) (Tao et al., TEICAI 2024)
ACL
- Yufei Tao, Tiernan Mines, and Ameeta Agrawal. 2024. Making a Long Story Short in Conversation Modeling. In Proceedings of the 1st Worskhop on Towards Ethical and Inclusive Conversational AI: Language Attitudes, Linguistic Diversity, and Language Rights (TEICAI 2024), pages 42–49, St Julians, Malta. Association for Computational Linguistics.