@inproceedings{li-etal-2024-chinchunmei,
title = "Chinchunmei at {WASSA} 2024 Empathy and Personality Shared Task: Boosting {LLM}{'}s Prediction with Role-play Augmentation and Contrastive Reasoning Calibration",
author = "Li, Tian and
Rusnachenko, Nicolay and
Liang, Huizhi",
editor = "De Clercq, Orph{\'e}e and
Barriere, Valentin and
Barnes, Jeremy and
Klinger, Roman and
Sedoc, Jo{\~a}o and
Tafreshi, Shabnam",
booktitle = "Proceedings of the 14th Workshop on Computational Approaches to Subjectivity, Sentiment, {\&} Social Media Analysis",
month = aug,
year = "2024",
address = "Bangkok, Thailand",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.wassa-1.32",
pages = "385--392",
abstract = "This paper presents the Chinchunmei team{'}s contributions to the WASSA2024 Shared-Task 1: Empathy Detection and Emotion Classification. We participated in Tracks 1, 2, and 3 to predict empathetic scores based on dialogue, article, and essay content. We choose Llama3-8b-instruct as our base model. We developed three supervised fine-tuning schemes: standard prediction, role-play, and contrastive prediction, along with an innovative scoring calibration method called Contrastive Reasoning Calibration during inference. Pearson Correlation was used as the evaluation metric across all tracks. For Track 1, we achieved 0.43 on the devset and 0.17 on the testset. For Track 2 emotion, empathy, and polarity labels, we obtained 0.64, 0.66, and 0.79 on the devset and 0.61, 0.68, and 0.58 on the testset. For Track 3 empathy and distress labels, we got 0.64 and 0.56 on the devset and 0.33 and 0.35 on the testset.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="li-etal-2024-chinchunmei">
<titleInfo>
<title>Chinchunmei at WASSA 2024 Empathy and Personality Shared Task: Boosting LLM’s Prediction with Role-play Augmentation and Contrastive Reasoning Calibration</title>
</titleInfo>
<name type="personal">
<namePart type="given">Tian</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nicolay</namePart>
<namePart type="family">Rusnachenko</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Huizhi</namePart>
<namePart type="family">Liang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 14th Workshop on Computational Approaches to Subjectivity, Sentiment, & Social Media Analysis</title>
</titleInfo>
<name type="personal">
<namePart type="given">Orphée</namePart>
<namePart type="family">De Clercq</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Valentin</namePart>
<namePart type="family">Barriere</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jeremy</namePart>
<namePart type="family">Barnes</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Roman</namePart>
<namePart type="family">Klinger</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">João</namePart>
<namePart type="family">Sedoc</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shabnam</namePart>
<namePart type="family">Tafreshi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Bangkok, Thailand</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper presents the Chinchunmei team’s contributions to the WASSA2024 Shared-Task 1: Empathy Detection and Emotion Classification. We participated in Tracks 1, 2, and 3 to predict empathetic scores based on dialogue, article, and essay content. We choose Llama3-8b-instruct as our base model. We developed three supervised fine-tuning schemes: standard prediction, role-play, and contrastive prediction, along with an innovative scoring calibration method called Contrastive Reasoning Calibration during inference. Pearson Correlation was used as the evaluation metric across all tracks. For Track 1, we achieved 0.43 on the devset and 0.17 on the testset. For Track 2 emotion, empathy, and polarity labels, we obtained 0.64, 0.66, and 0.79 on the devset and 0.61, 0.68, and 0.58 on the testset. For Track 3 empathy and distress labels, we got 0.64 and 0.56 on the devset and 0.33 and 0.35 on the testset.</abstract>
<identifier type="citekey">li-etal-2024-chinchunmei</identifier>
<location>
<url>https://aclanthology.org/2024.wassa-1.32</url>
</location>
<part>
<date>2024-08</date>
<extent unit="page">
<start>385</start>
<end>392</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Chinchunmei at WASSA 2024 Empathy and Personality Shared Task: Boosting LLM’s Prediction with Role-play Augmentation and Contrastive Reasoning Calibration
%A Li, Tian
%A Rusnachenko, Nicolay
%A Liang, Huizhi
%Y De Clercq, Orphée
%Y Barriere, Valentin
%Y Barnes, Jeremy
%Y Klinger, Roman
%Y Sedoc, João
%Y Tafreshi, Shabnam
%S Proceedings of the 14th Workshop on Computational Approaches to Subjectivity, Sentiment, & Social Media Analysis
%D 2024
%8 August
%I Association for Computational Linguistics
%C Bangkok, Thailand
%F li-etal-2024-chinchunmei
%X This paper presents the Chinchunmei team’s contributions to the WASSA2024 Shared-Task 1: Empathy Detection and Emotion Classification. We participated in Tracks 1, 2, and 3 to predict empathetic scores based on dialogue, article, and essay content. We choose Llama3-8b-instruct as our base model. We developed three supervised fine-tuning schemes: standard prediction, role-play, and contrastive prediction, along with an innovative scoring calibration method called Contrastive Reasoning Calibration during inference. Pearson Correlation was used as the evaluation metric across all tracks. For Track 1, we achieved 0.43 on the devset and 0.17 on the testset. For Track 2 emotion, empathy, and polarity labels, we obtained 0.64, 0.66, and 0.79 on the devset and 0.61, 0.68, and 0.58 on the testset. For Track 3 empathy and distress labels, we got 0.64 and 0.56 on the devset and 0.33 and 0.35 on the testset.
%U https://aclanthology.org/2024.wassa-1.32
%P 385-392
Markdown (Informal)
[Chinchunmei at WASSA 2024 Empathy and Personality Shared Task: Boosting LLM’s Prediction with Role-play Augmentation and Contrastive Reasoning Calibration](https://aclanthology.org/2024.wassa-1.32) (Li et al., WASSA-WS 2024)
ACL