@inproceedings{wang-etal-2025-mdpo,
title = "{MDPO}: Customized Direct Preference Optimization with a Metric-based Sampler for Question and Answer Generation",
author = "Wang, Yihang and
Tian, Bowen and
Su, Yueyang and
Fan, Yixing and
Guo, Jiafeng",
editor = "Rambow, Owen and
Wanner, Leo and
Apidianaki, Marianna and
Al-Khalifa, Hend and
Eugenio, Barbara Di and
Schockaert, Steven",
booktitle = "Proceedings of the 31st International Conference on Computational Linguistics",
month = jan,
year = "2025",
address = "Abu Dhabi, UAE",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.coling-main.711/",
pages = "10660--10671",
abstract = "With the extensive use of large language models, automatically generating QA datasets for domain-specific fine-tuning has become crucial. However, considering the multifaceted demands for readability, diversity, and comprehensiveness of QA data, current methodologies fall short in producing high-quality QA datasets. Moreover, the dependence of existing evaluation metrics on ground truth labels further exacerbates the challenges associated with the selection of QA data. In this paper, we introduce a novel method for QA data generation, denoted as MDPO. We proposes a set of unsupervised evaluation metrics for QA data, enabling multidimensional assessment based on the relationships among context,question and answer. Furthermore, leveraging these metrics, we implement a customized direct preference optimization process that guides large language models to produce high-quality and domain-specific QA pairs. Empirical results on public datasets indicate that MDPO`s performance substantially surpasses that of state-of-the-art methods."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="wang-etal-2025-mdpo">
<titleInfo>
<title>MDPO: Customized Direct Preference Optimization with a Metric-based Sampler for Question and Answer Generation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yihang</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bowen</namePart>
<namePart type="family">Tian</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yueyang</namePart>
<namePart type="family">Su</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yixing</namePart>
<namePart type="family">Fan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jiafeng</namePart>
<namePart type="family">Guo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-01</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 31st International Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Owen</namePart>
<namePart type="family">Rambow</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Leo</namePart>
<namePart type="family">Wanner</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hend</namePart>
<namePart type="family">Al-Khalifa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Barbara</namePart>
<namePart type="given">Di</namePart>
<namePart type="family">Eugenio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Schockaert</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Abu Dhabi, UAE</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>With the extensive use of large language models, automatically generating QA datasets for domain-specific fine-tuning has become crucial. However, considering the multifaceted demands for readability, diversity, and comprehensiveness of QA data, current methodologies fall short in producing high-quality QA datasets. Moreover, the dependence of existing evaluation metrics on ground truth labels further exacerbates the challenges associated with the selection of QA data. In this paper, we introduce a novel method for QA data generation, denoted as MDPO. We proposes a set of unsupervised evaluation metrics for QA data, enabling multidimensional assessment based on the relationships among context,question and answer. Furthermore, leveraging these metrics, we implement a customized direct preference optimization process that guides large language models to produce high-quality and domain-specific QA pairs. Empirical results on public datasets indicate that MDPO‘s performance substantially surpasses that of state-of-the-art methods.</abstract>
<identifier type="citekey">wang-etal-2025-mdpo</identifier>
<location>
<url>https://aclanthology.org/2025.coling-main.711/</url>
</location>
<part>
<date>2025-01</date>
<extent unit="page">
<start>10660</start>
<end>10671</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T MDPO: Customized Direct Preference Optimization with a Metric-based Sampler for Question and Answer Generation
%A Wang, Yihang
%A Tian, Bowen
%A Su, Yueyang
%A Fan, Yixing
%A Guo, Jiafeng
%Y Rambow, Owen
%Y Wanner, Leo
%Y Apidianaki, Marianna
%Y Al-Khalifa, Hend
%Y Eugenio, Barbara Di
%Y Schockaert, Steven
%S Proceedings of the 31st International Conference on Computational Linguistics
%D 2025
%8 January
%I Association for Computational Linguistics
%C Abu Dhabi, UAE
%F wang-etal-2025-mdpo
%X With the extensive use of large language models, automatically generating QA datasets for domain-specific fine-tuning has become crucial. However, considering the multifaceted demands for readability, diversity, and comprehensiveness of QA data, current methodologies fall short in producing high-quality QA datasets. Moreover, the dependence of existing evaluation metrics on ground truth labels further exacerbates the challenges associated with the selection of QA data. In this paper, we introduce a novel method for QA data generation, denoted as MDPO. We proposes a set of unsupervised evaluation metrics for QA data, enabling multidimensional assessment based on the relationships among context,question and answer. Furthermore, leveraging these metrics, we implement a customized direct preference optimization process that guides large language models to produce high-quality and domain-specific QA pairs. Empirical results on public datasets indicate that MDPO‘s performance substantially surpasses that of state-of-the-art methods.
%U https://aclanthology.org/2025.coling-main.711/
%P 10660-10671
Markdown (Informal)
[MDPO: Customized Direct Preference Optimization with a Metric-based Sampler for Question and Answer Generation](https://aclanthology.org/2025.coling-main.711/) (Wang et al., COLING 2025)
ACL