@inproceedings{ren-etal-2016-redundancy,
title = "A Redundancy-Aware Sentence Regression Framework for Extractive Summarization",
author = "Ren, Pengjie and
Wei, Furu and
Chen, Zhumin and
Ma, Jun and
Zhou, Ming",
editor = "Matsumoto, Yuji and
Prasad, Rashmi",
booktitle = "Proceedings of {COLING} 2016, the 26th International Conference on Computational Linguistics: Technical Papers",
month = dec,
year = "2016",
address = "Osaka, Japan",
publisher = "The COLING 2016 Organizing Committee",
url = "https://aclanthology.org/C16-1004",
pages = "33--43",
abstract = "Existing sentence regression methods for extractive summarization usually model sentence importance and redundancy in two separate processes. They first evaluate the importance f(s) of each sentence s and then select sentences to generate a summary based on both the importance scores and redundancy among sentences. In this paper, we propose to model importance and redundancy simultaneously by directly evaluating the relative importance f(s|S) of a sentence s given a set of selected sentences S. Specifically, we present a new framework to conduct regression with respect to the relative gain of s given S calculated by the ROUGE metric. Besides the single sentence features, additional features derived from the sentence relations are incorporated. Experiments on the DUC 2001, 2002 and 2004 multi-document summarization datasets show that the proposed method outperforms state-of-the-art extractive summarization approaches.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ren-etal-2016-redundancy">
<titleInfo>
<title>A Redundancy-Aware Sentence Regression Framework for Extractive Summarization</title>
</titleInfo>
<name type="personal">
<namePart type="given">Pengjie</namePart>
<namePart type="family">Ren</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Furu</namePart>
<namePart type="family">Wei</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhumin</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jun</namePart>
<namePart type="family">Ma</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ming</namePart>
<namePart type="family">Zhou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2016-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yuji</namePart>
<namePart type="family">Matsumoto</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rashmi</namePart>
<namePart type="family">Prasad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>The COLING 2016 Organizing Committee</publisher>
<place>
<placeTerm type="text">Osaka, Japan</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Existing sentence regression methods for extractive summarization usually model sentence importance and redundancy in two separate processes. They first evaluate the importance f(s) of each sentence s and then select sentences to generate a summary based on both the importance scores and redundancy among sentences. In this paper, we propose to model importance and redundancy simultaneously by directly evaluating the relative importance f(s|S) of a sentence s given a set of selected sentences S. Specifically, we present a new framework to conduct regression with respect to the relative gain of s given S calculated by the ROUGE metric. Besides the single sentence features, additional features derived from the sentence relations are incorporated. Experiments on the DUC 2001, 2002 and 2004 multi-document summarization datasets show that the proposed method outperforms state-of-the-art extractive summarization approaches.</abstract>
<identifier type="citekey">ren-etal-2016-redundancy</identifier>
<location>
<url>https://aclanthology.org/C16-1004</url>
</location>
<part>
<date>2016-12</date>
<extent unit="page">
<start>33</start>
<end>43</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A Redundancy-Aware Sentence Regression Framework for Extractive Summarization
%A Ren, Pengjie
%A Wei, Furu
%A Chen, Zhumin
%A Ma, Jun
%A Zhou, Ming
%Y Matsumoto, Yuji
%Y Prasad, Rashmi
%S Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers
%D 2016
%8 December
%I The COLING 2016 Organizing Committee
%C Osaka, Japan
%F ren-etal-2016-redundancy
%X Existing sentence regression methods for extractive summarization usually model sentence importance and redundancy in two separate processes. They first evaluate the importance f(s) of each sentence s and then select sentences to generate a summary based on both the importance scores and redundancy among sentences. In this paper, we propose to model importance and redundancy simultaneously by directly evaluating the relative importance f(s|S) of a sentence s given a set of selected sentences S. Specifically, we present a new framework to conduct regression with respect to the relative gain of s given S calculated by the ROUGE metric. Besides the single sentence features, additional features derived from the sentence relations are incorporated. Experiments on the DUC 2001, 2002 and 2004 multi-document summarization datasets show that the proposed method outperforms state-of-the-art extractive summarization approaches.
%U https://aclanthology.org/C16-1004
%P 33-43
Markdown (Informal)
[A Redundancy-Aware Sentence Regression Framework for Extractive Summarization](https://aclanthology.org/C16-1004) (Ren et al., COLING 2016)
ACL