The FLORES Evaluation Datasets for Low-Resource Machine Translation: Nepali–English and Sinhala–English

Francisco Guzmán, Peng-Jen Chen, Myle Ott, Juan Pino, Guillaume Lample, Philipp Koehn, Vishrav Chaudhary, Marc’Aurelio Ranzato


Abstract
For machine translation, a vast majority of language pairs in the world are considered low-resource because they have little parallel data available. Besides the technical challenges of learning with limited supervision, it is difficult to evaluate methods trained on low-resource language pairs because of the lack of freely and publicly available benchmarks. In this work, we introduce the FLORES evaluation datasets for Nepali–English and Sinhala– English, based on sentences translated from Wikipedia. Compared to English, these are languages with very different morphology and syntax, for which little out-of-domain parallel data is available and for which relatively large amounts of monolingual data are freely available. We describe our process to collect and cross-check the quality of translations, and we report baseline performance using several learning settings: fully supervised, weakly supervised, semi-supervised, and fully unsupervised. Our experiments demonstrate that current state-of-the-art methods perform rather poorly on this benchmark, posing a challenge to the research community working on low-resource MT. Data and code to reproduce our experiments are available at https://github.com/facebookresearch/flores.
Anthology ID:
D19-1632
Volume:
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)
Month:
November
Year:
2019
Address:
Hong Kong, China
Editors:
Kentaro Inui, Jing Jiang, Vincent Ng, Xiaojun Wan
Venues:
EMNLP | IJCNLP
SIG:
SIGDAT
Publisher:
Association for Computational Linguistics
Note:
Pages:
6098–6111
Language:
URL:
https://aclanthology.org/D19-1632
DOI:
10.18653/v1/D19-1632
Award:
 Best Resource Paper
Bibkey:
Cite (ACL):
Francisco Guzmán, Peng-Jen Chen, Myle Ott, Juan Pino, Guillaume Lample, Philipp Koehn, Vishrav Chaudhary, and Marc’Aurelio Ranzato. 2019. The FLORES Evaluation Datasets for Low-Resource Machine Translation: Nepali–English and Sinhala–English. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 6098–6111, Hong Kong, China. Association for Computational Linguistics.
Cite (Informal):
The FLORES Evaluation Datasets for Low-Resource Machine Translation: Nepali–English and Sinhala–English (Guzmán et al., EMNLP-IJCNLP 2019)
Copy Citation:
PDF:
https://aclanthology.org/D19-1632.pdf
Attachment:
 D19-1632.Attachment.zip
Code
 facebookresearch/flores
Data
FLoRes