@inproceedings{pereira-etal-2017-lexical,
title = "Lexical Simplification with the Deep Structured Similarity Model",
author = "Pereira, Lis and
Liu, Xiaodong and
Lee, John",
editor = "Kondrak, Greg and
Watanabe, Taro",
booktitle = "Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 2: Short Papers)",
month = nov,
year = "2017",
address = "Taipei, Taiwan",
publisher = "Asian Federation of Natural Language Processing",
url = "https://aclanthology.org/I17-2073",
pages = "430--435",
abstract = "We explore the application of a Deep Structured Similarity Model (DSSM) to ranking in lexical simplification. Our results show that the DSSM can effectively capture fine-grained features to perform semantic matching when ranking substitution candidates, outperforming the state-of-the-art on two standard datasets used for the task.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="pereira-etal-2017-lexical">
<titleInfo>
<title>Lexical Simplification with the Deep Structured Similarity Model</title>
</titleInfo>
<name type="personal">
<namePart type="given">Lis</namePart>
<namePart type="family">Pereira</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaodong</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">John</namePart>
<namePart type="family">Lee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 2: Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Greg</namePart>
<namePart type="family">Kondrak</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Taro</namePart>
<namePart type="family">Watanabe</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Asian Federation of Natural Language Processing</publisher>
<place>
<placeTerm type="text">Taipei, Taiwan</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We explore the application of a Deep Structured Similarity Model (DSSM) to ranking in lexical simplification. Our results show that the DSSM can effectively capture fine-grained features to perform semantic matching when ranking substitution candidates, outperforming the state-of-the-art on two standard datasets used for the task.</abstract>
<identifier type="citekey">pereira-etal-2017-lexical</identifier>
<location>
<url>https://aclanthology.org/I17-2073</url>
</location>
<part>
<date>2017-11</date>
<extent unit="page">
<start>430</start>
<end>435</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Lexical Simplification with the Deep Structured Similarity Model
%A Pereira, Lis
%A Liu, Xiaodong
%A Lee, John
%Y Kondrak, Greg
%Y Watanabe, Taro
%S Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 2: Short Papers)
%D 2017
%8 November
%I Asian Federation of Natural Language Processing
%C Taipei, Taiwan
%F pereira-etal-2017-lexical
%X We explore the application of a Deep Structured Similarity Model (DSSM) to ranking in lexical simplification. Our results show that the DSSM can effectively capture fine-grained features to perform semantic matching when ranking substitution candidates, outperforming the state-of-the-art on two standard datasets used for the task.
%U https://aclanthology.org/I17-2073
%P 430-435
Markdown (Informal)
[Lexical Simplification with the Deep Structured Similarity Model](https://aclanthology.org/I17-2073) (Pereira et al., IJCNLP 2017)
ACL