@inproceedings{mehta-etal-2017-deep,
title = "Deep Neural Network based system for solving Arithmetic Word problems",
author = "Mehta, Purvanshi and
Mishra, Pruthwik and
Athavale, Vinayak and
Shrivastava, Manish and
Sharma, Dipti",
editor = "Park, Seong-Bae and
Supnithi, Thepchai",
booktitle = "Proceedings of the {IJCNLP} 2017, System Demonstrations",
month = nov,
year = "2017",
address = "Tapei, Taiwan",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/I17-3017",
pages = "65--68",
abstract = "This paper presents DILTON a system which solves simple arithmetic word problems. DILTON uses a Deep Neural based model to solve math word problems. DILTON divides the question into two parts - worldstate and query. The worldstate and the query are processed separately in two different networks and finally, the networks are merged to predict the final operation. We report the first deep learning approach for the prediction of operation between two numbers. DILTON learns to predict operations with 88.81{\%} accuracy in a corpus of primary school questions.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="mehta-etal-2017-deep">
<titleInfo>
<title>Deep Neural Network based system for solving Arithmetic Word problems</title>
</titleInfo>
<name type="personal">
<namePart type="given">Purvanshi</namePart>
<namePart type="family">Mehta</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pruthwik</namePart>
<namePart type="family">Mishra</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vinayak</namePart>
<namePart type="family">Athavale</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Manish</namePart>
<namePart type="family">Shrivastava</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dipti</namePart>
<namePart type="family">Sharma</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the IJCNLP 2017, System Demonstrations</title>
</titleInfo>
<name type="personal">
<namePart type="given">Seong-Bae</namePart>
<namePart type="family">Park</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thepchai</namePart>
<namePart type="family">Supnithi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Tapei, Taiwan</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper presents DILTON a system which solves simple arithmetic word problems. DILTON uses a Deep Neural based model to solve math word problems. DILTON divides the question into two parts - worldstate and query. The worldstate and the query are processed separately in two different networks and finally, the networks are merged to predict the final operation. We report the first deep learning approach for the prediction of operation between two numbers. DILTON learns to predict operations with 88.81% accuracy in a corpus of primary school questions.</abstract>
<identifier type="citekey">mehta-etal-2017-deep</identifier>
<location>
<url>https://aclanthology.org/I17-3017</url>
</location>
<part>
<date>2017-11</date>
<extent unit="page">
<start>65</start>
<end>68</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Deep Neural Network based system for solving Arithmetic Word problems
%A Mehta, Purvanshi
%A Mishra, Pruthwik
%A Athavale, Vinayak
%A Shrivastava, Manish
%A Sharma, Dipti
%Y Park, Seong-Bae
%Y Supnithi, Thepchai
%S Proceedings of the IJCNLP 2017, System Demonstrations
%D 2017
%8 November
%I Association for Computational Linguistics
%C Tapei, Taiwan
%F mehta-etal-2017-deep
%X This paper presents DILTON a system which solves simple arithmetic word problems. DILTON uses a Deep Neural based model to solve math word problems. DILTON divides the question into two parts - worldstate and query. The worldstate and the query are processed separately in two different networks and finally, the networks are merged to predict the final operation. We report the first deep learning approach for the prediction of operation between two numbers. DILTON learns to predict operations with 88.81% accuracy in a corpus of primary school questions.
%U https://aclanthology.org/I17-3017
%P 65-68
Markdown (Informal)
[Deep Neural Network based system for solving Arithmetic Word problems](https://aclanthology.org/I17-3017) (Mehta et al., IJCNLP 2017)
ACL