@inproceedings{cuadros-etal-2012-highlighting,
title = "Highlighting relevant concepts from Topic Signatures",
author = "Cuadros, Montse and
Padr{\'o}, Llu{\'\i}s and
Rigau, German",
editor = "Calzolari, Nicoletta and
Choukri, Khalid and
Declerck, Thierry and
Do{\u{g}}an, Mehmet U{\u{g}}ur and
Maegaard, Bente and
Mariani, Joseph and
Moreno, Asuncion and
Odijk, Jan and
Piperidis, Stelios",
booktitle = "Proceedings of the Eighth International Conference on Language Resources and Evaluation ({LREC}'12)",
month = may,
year = "2012",
address = "Istanbul, Turkey",
publisher = "European Language Resources Association (ELRA)",
url = "http://www.lrec-conf.org/proceedings/lrec2012/pdf/374_Paper.pdf",
pages = "3841--3848",
abstract = "This paper presents deepKnowNet, a new fully automatic method for building highly dense and accurate knowledge bases from existing semantic resources. Basically, the method applies a knowledge-based Word Sense Disambiguation algorithm to assign the most appropriate WordNet sense to large sets of topically related words acquired from the web, named TSWEB. This Word Sense Disambiguation algorithm is the personalized PageRank algorithm implemented in UKB. This new method improves by automatic means the current content of WordNet by creating large volumes of new and accurate semantic relations between synsets. KnowNet was our first attempt towards the acquisition of large volumes of semantic relations. However, KnowNet had some limitations that have been overcomed with deepKnowNet. deepKnowNet disambiguates the first hundred words of all Topic Signatures from the web (TSWEB). In this case, the method highlights the most relevant word senses of each Topic Signature and filter out the ones that are not so related to the topic. In fact, the knowledge it contains outperforms any other resource when is empirically evaluated in a common framework based on a similarity task annotated with human judgements.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="cuadros-etal-2012-highlighting">
<titleInfo>
<title>Highlighting relevant concepts from Topic Signatures</title>
</titleInfo>
<name type="personal">
<namePart type="given">Montse</namePart>
<namePart type="family">Cuadros</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lluís</namePart>
<namePart type="family">Padró</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">German</namePart>
<namePart type="family">Rigau</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2012-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Eighth International Conference on Language Resources and Evaluation (LREC’12)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Khalid</namePart>
<namePart type="family">Choukri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thierry</namePart>
<namePart type="family">Declerck</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mehmet</namePart>
<namePart type="given">Uğur</namePart>
<namePart type="family">Doğan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bente</namePart>
<namePart type="family">Maegaard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joseph</namePart>
<namePart type="family">Mariani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Asuncion</namePart>
<namePart type="family">Moreno</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Odijk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stelios</namePart>
<namePart type="family">Piperidis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Language Resources Association (ELRA)</publisher>
<place>
<placeTerm type="text">Istanbul, Turkey</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper presents deepKnowNet, a new fully automatic method for building highly dense and accurate knowledge bases from existing semantic resources. Basically, the method applies a knowledge-based Word Sense Disambiguation algorithm to assign the most appropriate WordNet sense to large sets of topically related words acquired from the web, named TSWEB. This Word Sense Disambiguation algorithm is the personalized PageRank algorithm implemented in UKB. This new method improves by automatic means the current content of WordNet by creating large volumes of new and accurate semantic relations between synsets. KnowNet was our first attempt towards the acquisition of large volumes of semantic relations. However, KnowNet had some limitations that have been overcomed with deepKnowNet. deepKnowNet disambiguates the first hundred words of all Topic Signatures from the web (TSWEB). In this case, the method highlights the most relevant word senses of each Topic Signature and filter out the ones that are not so related to the topic. In fact, the knowledge it contains outperforms any other resource when is empirically evaluated in a common framework based on a similarity task annotated with human judgements.</abstract>
<identifier type="citekey">cuadros-etal-2012-highlighting</identifier>
<location>
<url>http://www.lrec-conf.org/proceedings/lrec2012/pdf/374_Paper.pdf</url>
</location>
<part>
<date>2012-05</date>
<extent unit="page">
<start>3841</start>
<end>3848</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Highlighting relevant concepts from Topic Signatures
%A Cuadros, Montse
%A Padró, Lluís
%A Rigau, German
%Y Calzolari, Nicoletta
%Y Choukri, Khalid
%Y Declerck, Thierry
%Y Doğan, Mehmet Uğur
%Y Maegaard, Bente
%Y Mariani, Joseph
%Y Moreno, Asuncion
%Y Odijk, Jan
%Y Piperidis, Stelios
%S Proceedings of the Eighth International Conference on Language Resources and Evaluation (LREC’12)
%D 2012
%8 May
%I European Language Resources Association (ELRA)
%C Istanbul, Turkey
%F cuadros-etal-2012-highlighting
%X This paper presents deepKnowNet, a new fully automatic method for building highly dense and accurate knowledge bases from existing semantic resources. Basically, the method applies a knowledge-based Word Sense Disambiguation algorithm to assign the most appropriate WordNet sense to large sets of topically related words acquired from the web, named TSWEB. This Word Sense Disambiguation algorithm is the personalized PageRank algorithm implemented in UKB. This new method improves by automatic means the current content of WordNet by creating large volumes of new and accurate semantic relations between synsets. KnowNet was our first attempt towards the acquisition of large volumes of semantic relations. However, KnowNet had some limitations that have been overcomed with deepKnowNet. deepKnowNet disambiguates the first hundred words of all Topic Signatures from the web (TSWEB). In this case, the method highlights the most relevant word senses of each Topic Signature and filter out the ones that are not so related to the topic. In fact, the knowledge it contains outperforms any other resource when is empirically evaluated in a common framework based on a similarity task annotated with human judgements.
%U http://www.lrec-conf.org/proceedings/lrec2012/pdf/374_Paper.pdf
%P 3841-3848
Markdown (Informal)
[Highlighting relevant concepts from Topic Signatures](http://www.lrec-conf.org/proceedings/lrec2012/pdf/374_Paper.pdf) (Cuadros et al., LREC 2012)
ACL
- Montse Cuadros, Lluís Padró, and German Rigau. 2012. Highlighting relevant concepts from Topic Signatures. In Proceedings of the Eighth International Conference on Language Resources and Evaluation (LREC'12), pages 3841–3848, Istanbul, Turkey. European Language Resources Association (ELRA).