@inproceedings{golovanov-etal-2019-large,
title = "Large-Scale Transfer Learning for Natural Language Generation",
author = "Golovanov, Sergey and
Kurbanov, Rauf and
Nikolenko, Sergey and
Truskovskyi, Kyryl and
Tselousov, Alexander and
Wolf, Thomas",
editor = "Korhonen, Anna and
Traum, David and
M{\`a}rquez, Llu{\'\i}s",
booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P19-1608",
doi = "10.18653/v1/P19-1608",
pages = "6053--6058",
abstract = "Large-scale pretrained language models define state of the art in natural language processing, achieving outstanding performance on a variety of tasks. We study how these architectures can be applied and adapted for natural language generation, comparing a number of architectural and training schemes. We focus in particular on open-domain dialog as a typical high entropy generation task, presenting and comparing different architectures for adapting pretrained models with state of the art results.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="golovanov-etal-2019-large">
<titleInfo>
<title>Large-Scale Transfer Learning for Natural Language Generation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sergey</namePart>
<namePart type="family">Golovanov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rauf</namePart>
<namePart type="family">Kurbanov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sergey</namePart>
<namePart type="family">Nikolenko</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kyryl</namePart>
<namePart type="family">Truskovskyi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexander</namePart>
<namePart type="family">Tselousov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thomas</namePart>
<namePart type="family">Wolf</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Korhonen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Traum</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lluís</namePart>
<namePart type="family">Màrquez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Florence, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Large-scale pretrained language models define state of the art in natural language processing, achieving outstanding performance on a variety of tasks. We study how these architectures can be applied and adapted for natural language generation, comparing a number of architectural and training schemes. We focus in particular on open-domain dialog as a typical high entropy generation task, presenting and comparing different architectures for adapting pretrained models with state of the art results.</abstract>
<identifier type="citekey">golovanov-etal-2019-large</identifier>
<identifier type="doi">10.18653/v1/P19-1608</identifier>
<location>
<url>https://aclanthology.org/P19-1608</url>
</location>
<part>
<date>2019-07</date>
<extent unit="page">
<start>6053</start>
<end>6058</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Large-Scale Transfer Learning for Natural Language Generation
%A Golovanov, Sergey
%A Kurbanov, Rauf
%A Nikolenko, Sergey
%A Truskovskyi, Kyryl
%A Tselousov, Alexander
%A Wolf, Thomas
%Y Korhonen, Anna
%Y Traum, David
%Y Màrquez, Lluís
%S Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics
%D 2019
%8 July
%I Association for Computational Linguistics
%C Florence, Italy
%F golovanov-etal-2019-large
%X Large-scale pretrained language models define state of the art in natural language processing, achieving outstanding performance on a variety of tasks. We study how these architectures can be applied and adapted for natural language generation, comparing a number of architectural and training schemes. We focus in particular on open-domain dialog as a typical high entropy generation task, presenting and comparing different architectures for adapting pretrained models with state of the art results.
%R 10.18653/v1/P19-1608
%U https://aclanthology.org/P19-1608
%U https://doi.org/10.18653/v1/P19-1608
%P 6053-6058
Markdown (Informal)
[Large-Scale Transfer Learning for Natural Language Generation](https://aclanthology.org/P19-1608) (Golovanov et al., ACL 2019)
ACL
- Sergey Golovanov, Rauf Kurbanov, Sergey Nikolenko, Kyryl Truskovskyi, Alexander Tselousov, and Thomas Wolf. 2019. Large-Scale Transfer Learning for Natural Language Generation. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 6053–6058, Florence, Italy. Association for Computational Linguistics.