@article{martins-etal-2017-pushing,
title = "Pushing the Limits of Translation Quality Estimation",
author = "Martins, Andr{\'e} F. T. and
Junczys-Dowmunt, Marcin and
Kepler, Fabio N. and
Astudillo, Ram{\'o}n and
Hokamp, Chris and
Grundkiewicz, Roman",
editor = "Lee, Lillian and
Johnson, Mark and
Toutanova, Kristina",
journal = "Transactions of the Association for Computational Linguistics",
volume = "5",
year = "2017",
address = "Cambridge, MA",
publisher = "MIT Press",
url = "https://aclanthology.org/Q17-1015",
doi = "10.1162/tacl_a_00056",
pages = "205--218",
abstract = "Translation quality estimation is a task of growing importance in NLP, due to its potential to reduce post-editing human effort in disruptive ways. However, this potential is currently limited by the relatively low accuracy of existing systems. In this paper, we achieve remarkable improvements by exploiting synergies between the related tasks of word-level quality estimation and automatic post-editing. First, we stack a new, carefully engineered, neural model into a rich feature-based word-level quality estimation system. Then, we use the output of an automatic post-editing system as an extra feature, obtaining striking results on WMT16: a word-level FMULT1 score of 57.47{\%} (an absolute gain of +7.95{\%} over the current state of the art), and a Pearson correlation score of 65.56{\%} for sentence-level HTER prediction (an absolute gain of +13.36{\%}).",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="martins-etal-2017-pushing">
<titleInfo>
<title>Pushing the Limits of Translation Quality Estimation</title>
</titleInfo>
<name type="personal">
<namePart type="given">André</namePart>
<namePart type="given">F</namePart>
<namePart type="given">T</namePart>
<namePart type="family">Martins</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marcin</namePart>
<namePart type="family">Junczys-Dowmunt</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fabio</namePart>
<namePart type="given">N</namePart>
<namePart type="family">Kepler</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ramón</namePart>
<namePart type="family">Astudillo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chris</namePart>
<namePart type="family">Hokamp</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Roman</namePart>
<namePart type="family">Grundkiewicz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<genre authority="bibutilsgt">journal article</genre>
<relatedItem type="host">
<titleInfo>
<title>Transactions of the Association for Computational Linguistics</title>
</titleInfo>
<originInfo>
<issuance>continuing</issuance>
<publisher>MIT Press</publisher>
<place>
<placeTerm type="text">Cambridge, MA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">periodical</genre>
<genre authority="bibutilsgt">academic journal</genre>
</relatedItem>
<abstract>Translation quality estimation is a task of growing importance in NLP, due to its potential to reduce post-editing human effort in disruptive ways. However, this potential is currently limited by the relatively low accuracy of existing systems. In this paper, we achieve remarkable improvements by exploiting synergies between the related tasks of word-level quality estimation and automatic post-editing. First, we stack a new, carefully engineered, neural model into a rich feature-based word-level quality estimation system. Then, we use the output of an automatic post-editing system as an extra feature, obtaining striking results on WMT16: a word-level FMULT1 score of 57.47% (an absolute gain of +7.95% over the current state of the art), and a Pearson correlation score of 65.56% for sentence-level HTER prediction (an absolute gain of +13.36%).</abstract>
<identifier type="citekey">martins-etal-2017-pushing</identifier>
<identifier type="doi">10.1162/tacl_a_00056</identifier>
<location>
<url>https://aclanthology.org/Q17-1015</url>
</location>
<part>
<date>2017</date>
<detail type="volume"><number>5</number></detail>
<extent unit="page">
<start>205</start>
<end>218</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Journal Article
%T Pushing the Limits of Translation Quality Estimation
%A Martins, André F. T.
%A Junczys-Dowmunt, Marcin
%A Kepler, Fabio N.
%A Astudillo, Ramón
%A Hokamp, Chris
%A Grundkiewicz, Roman
%J Transactions of the Association for Computational Linguistics
%D 2017
%V 5
%I MIT Press
%C Cambridge, MA
%F martins-etal-2017-pushing
%X Translation quality estimation is a task of growing importance in NLP, due to its potential to reduce post-editing human effort in disruptive ways. However, this potential is currently limited by the relatively low accuracy of existing systems. In this paper, we achieve remarkable improvements by exploiting synergies between the related tasks of word-level quality estimation and automatic post-editing. First, we stack a new, carefully engineered, neural model into a rich feature-based word-level quality estimation system. Then, we use the output of an automatic post-editing system as an extra feature, obtaining striking results on WMT16: a word-level FMULT1 score of 57.47% (an absolute gain of +7.95% over the current state of the art), and a Pearson correlation score of 65.56% for sentence-level HTER prediction (an absolute gain of +13.36%).
%R 10.1162/tacl_a_00056
%U https://aclanthology.org/Q17-1015
%U https://doi.org/10.1162/tacl_a_00056
%P 205-218
Markdown (Informal)
[Pushing the Limits of Translation Quality Estimation](https://aclanthology.org/Q17-1015) (Martins et al., TACL 2017)
ACL