@article{liu-zhang-2017-order,
title = "In-Order Transition-based Constituent Parsing",
author = "Liu, Jiangming and
Zhang, Yue",
editor = "Lee, Lillian and
Johnson, Mark and
Toutanova, Kristina",
journal = "Transactions of the Association for Computational Linguistics",
volume = "5",
year = "2017",
address = "Cambridge, MA",
publisher = "MIT Press",
url = "https://aclanthology.org/Q17-1029",
doi = "10.1162/tacl_a_00070",
pages = "413--424",
abstract = "Both bottom-up and top-down strategies have been used for neural transition-based constituent parsing. The parsing strategies differ in terms of the order in which they recognize productions in the derivation tree, where bottom-up strategies and top-down strategies take post-order and pre-order traversal over trees, respectively. Bottom-up parsers benefit from rich features from readily built partial parses, but lack lookahead guidance in the parsing process; top-down parsers benefit from non-local guidance for local decisions, but rely on a strong encoder over the input to predict a constituent hierarchy before its construction. To mitigate both issues, we propose a novel parsing system based on in-order traversal over syntactic trees, designing a set of transition actions to find a compromise between bottom-up constituent information and top-down lookahead information. Based on stack-LSTM, our psycholinguistically motivated constituent parsing system achieves 91.8 F1 on the WSJ benchmark. Furthermore, the system achieves 93.6 F1 with supervised reranking and 94.2 F1 with semi-supervised reranking, which are the best results on the WSJ benchmark.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="liu-zhang-2017-order">
<titleInfo>
<title>In-Order Transition-based Constituent Parsing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jiangming</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yue</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<genre authority="bibutilsgt">journal article</genre>
<relatedItem type="host">
<titleInfo>
<title>Transactions of the Association for Computational Linguistics</title>
</titleInfo>
<originInfo>
<issuance>continuing</issuance>
<publisher>MIT Press</publisher>
<place>
<placeTerm type="text">Cambridge, MA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">periodical</genre>
<genre authority="bibutilsgt">academic journal</genre>
</relatedItem>
<abstract>Both bottom-up and top-down strategies have been used for neural transition-based constituent parsing. The parsing strategies differ in terms of the order in which they recognize productions in the derivation tree, where bottom-up strategies and top-down strategies take post-order and pre-order traversal over trees, respectively. Bottom-up parsers benefit from rich features from readily built partial parses, but lack lookahead guidance in the parsing process; top-down parsers benefit from non-local guidance for local decisions, but rely on a strong encoder over the input to predict a constituent hierarchy before its construction. To mitigate both issues, we propose a novel parsing system based on in-order traversal over syntactic trees, designing a set of transition actions to find a compromise between bottom-up constituent information and top-down lookahead information. Based on stack-LSTM, our psycholinguistically motivated constituent parsing system achieves 91.8 F1 on the WSJ benchmark. Furthermore, the system achieves 93.6 F1 with supervised reranking and 94.2 F1 with semi-supervised reranking, which are the best results on the WSJ benchmark.</abstract>
<identifier type="citekey">liu-zhang-2017-order</identifier>
<identifier type="doi">10.1162/tacl_a_00070</identifier>
<location>
<url>https://aclanthology.org/Q17-1029</url>
</location>
<part>
<date>2017</date>
<detail type="volume"><number>5</number></detail>
<extent unit="page">
<start>413</start>
<end>424</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Journal Article
%T In-Order Transition-based Constituent Parsing
%A Liu, Jiangming
%A Zhang, Yue
%J Transactions of the Association for Computational Linguistics
%D 2017
%V 5
%I MIT Press
%C Cambridge, MA
%F liu-zhang-2017-order
%X Both bottom-up and top-down strategies have been used for neural transition-based constituent parsing. The parsing strategies differ in terms of the order in which they recognize productions in the derivation tree, where bottom-up strategies and top-down strategies take post-order and pre-order traversal over trees, respectively. Bottom-up parsers benefit from rich features from readily built partial parses, but lack lookahead guidance in the parsing process; top-down parsers benefit from non-local guidance for local decisions, but rely on a strong encoder over the input to predict a constituent hierarchy before its construction. To mitigate both issues, we propose a novel parsing system based on in-order traversal over syntactic trees, designing a set of transition actions to find a compromise between bottom-up constituent information and top-down lookahead information. Based on stack-LSTM, our psycholinguistically motivated constituent parsing system achieves 91.8 F1 on the WSJ benchmark. Furthermore, the system achieves 93.6 F1 with supervised reranking and 94.2 F1 with semi-supervised reranking, which are the best results on the WSJ benchmark.
%R 10.1162/tacl_a_00070
%U https://aclanthology.org/Q17-1029
%U https://doi.org/10.1162/tacl_a_00070
%P 413-424
Markdown (Informal)
[In-Order Transition-based Constituent Parsing](https://aclanthology.org/Q17-1029) (Liu & Zhang, TACL 2017)
ACL