@inproceedings{kocmi-bojar-2017-curriculum,
title = "Curriculum Learning and Minibatch Bucketing in Neural Machine Translation",
author = "Kocmi, Tom and
Bojar, Ond{\v{r}}ej",
editor = "Mitkov, Ruslan and
Angelova, Galia",
booktitle = "Proceedings of the International Conference Recent Advances in Natural Language Processing, {RANLP} 2017",
month = sep,
year = "2017",
address = "Varna, Bulgaria",
publisher = "INCOMA Ltd.",
url = "https://doi.org/10.26615/978-954-452-049-6_050",
doi = "10.26615/978-954-452-049-6_050",
pages = "379--386",
abstract = "We examine the effects of particular orderings of sentence pairs on the on-line training of neural machine translation (NMT). We focus on two types of such orderings: (1) ensuring that each minibatch contains sentences similar in some aspect and (2) gradual inclusion of some sentence types as the training progresses (so called {``}curriculum learning{''}). In our English-to-Czech experiments, the internal homogeneity of minibatches has no effect on the training but some of our {``}curricula{''} achieve a small improvement over the baseline.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kocmi-bojar-2017-curriculum">
<titleInfo>
<title>Curriculum Learning and Minibatch Bucketing in Neural Machine Translation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Tom</namePart>
<namePart type="family">Kocmi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ondřej</namePart>
<namePart type="family">Bojar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the International Conference Recent Advances in Natural Language Processing, RANLP 2017</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ruslan</namePart>
<namePart type="family">Mitkov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Galia</namePart>
<namePart type="family">Angelova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>INCOMA Ltd.</publisher>
<place>
<placeTerm type="text">Varna, Bulgaria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We examine the effects of particular orderings of sentence pairs on the on-line training of neural machine translation (NMT). We focus on two types of such orderings: (1) ensuring that each minibatch contains sentences similar in some aspect and (2) gradual inclusion of some sentence types as the training progresses (so called “curriculum learning”). In our English-to-Czech experiments, the internal homogeneity of minibatches has no effect on the training but some of our “curricula” achieve a small improvement over the baseline.</abstract>
<identifier type="citekey">kocmi-bojar-2017-curriculum</identifier>
<identifier type="doi">10.26615/978-954-452-049-6_050</identifier>
<part>
<date>2017-09</date>
<extent unit="page">
<start>379</start>
<end>386</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Curriculum Learning and Minibatch Bucketing in Neural Machine Translation
%A Kocmi, Tom
%A Bojar, Ondřej
%Y Mitkov, Ruslan
%Y Angelova, Galia
%S Proceedings of the International Conference Recent Advances in Natural Language Processing, RANLP 2017
%D 2017
%8 September
%I INCOMA Ltd.
%C Varna, Bulgaria
%F kocmi-bojar-2017-curriculum
%X We examine the effects of particular orderings of sentence pairs on the on-line training of neural machine translation (NMT). We focus on two types of such orderings: (1) ensuring that each minibatch contains sentences similar in some aspect and (2) gradual inclusion of some sentence types as the training progresses (so called “curriculum learning”). In our English-to-Czech experiments, the internal homogeneity of minibatches has no effect on the training but some of our “curricula” achieve a small improvement over the baseline.
%R 10.26615/978-954-452-049-6_050
%U https://doi.org/10.26615/978-954-452-049-6_050
%P 379-386
Markdown (Informal)
[Curriculum Learning and Minibatch Bucketing in Neural Machine Translation](https://doi.org/10.26615/978-954-452-049-6_050) (Kocmi & Bojar, RANLP 2017)
ACL