@inproceedings{roemmele-etal-2017-rnn,
title = "An {RNN}-based Binary Classifier for the Story Cloze Test",
author = "Roemmele, Melissa and
Kobayashi, Sosuke and
Inoue, Naoya and
Gordon, Andrew",
editor = "Roth, Michael and
Mostafazadeh, Nasrin and
Chambers, Nathanael and
Louis, Annie",
booktitle = "Proceedings of the 2nd Workshop on Linking Models of Lexical, Sentential and Discourse-level Semantics",
month = apr,
year = "2017",
address = "Valencia, Spain",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W17-0911",
doi = "10.18653/v1/W17-0911",
pages = "74--80",
abstract = "The Story Cloze Test consists of choosing a sentence that best completes a story given two choices. In this paper we present a system that performs this task using a supervised binary classifier on top of a recurrent neural network to predict the probability that a given story ending is correct. The classifier is trained to distinguish correct story endings given in the training data from incorrect ones that we artificially generate. Our experiments evaluate different methods for generating these negative examples, as well as different embedding-based representations of the stories. Our best result obtains 67.2{\%} accuracy on the test set, outperforming the existing top baseline of 58.5{\%}.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="roemmele-etal-2017-rnn">
<titleInfo>
<title>An RNN-based Binary Classifier for the Story Cloze Test</title>
</titleInfo>
<name type="personal">
<namePart type="given">Melissa</namePart>
<namePart type="family">Roemmele</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sosuke</namePart>
<namePart type="family">Kobayashi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Naoya</namePart>
<namePart type="family">Inoue</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andrew</namePart>
<namePart type="family">Gordon</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-04</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2nd Workshop on Linking Models of Lexical, Sentential and Discourse-level Semantics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Michael</namePart>
<namePart type="family">Roth</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nasrin</namePart>
<namePart type="family">Mostafazadeh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nathanael</namePart>
<namePart type="family">Chambers</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Annie</namePart>
<namePart type="family">Louis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Valencia, Spain</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The Story Cloze Test consists of choosing a sentence that best completes a story given two choices. In this paper we present a system that performs this task using a supervised binary classifier on top of a recurrent neural network to predict the probability that a given story ending is correct. The classifier is trained to distinguish correct story endings given in the training data from incorrect ones that we artificially generate. Our experiments evaluate different methods for generating these negative examples, as well as different embedding-based representations of the stories. Our best result obtains 67.2% accuracy on the test set, outperforming the existing top baseline of 58.5%.</abstract>
<identifier type="citekey">roemmele-etal-2017-rnn</identifier>
<identifier type="doi">10.18653/v1/W17-0911</identifier>
<location>
<url>https://aclanthology.org/W17-0911</url>
</location>
<part>
<date>2017-04</date>
<extent unit="page">
<start>74</start>
<end>80</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T An RNN-based Binary Classifier for the Story Cloze Test
%A Roemmele, Melissa
%A Kobayashi, Sosuke
%A Inoue, Naoya
%A Gordon, Andrew
%Y Roth, Michael
%Y Mostafazadeh, Nasrin
%Y Chambers, Nathanael
%Y Louis, Annie
%S Proceedings of the 2nd Workshop on Linking Models of Lexical, Sentential and Discourse-level Semantics
%D 2017
%8 April
%I Association for Computational Linguistics
%C Valencia, Spain
%F roemmele-etal-2017-rnn
%X The Story Cloze Test consists of choosing a sentence that best completes a story given two choices. In this paper we present a system that performs this task using a supervised binary classifier on top of a recurrent neural network to predict the probability that a given story ending is correct. The classifier is trained to distinguish correct story endings given in the training data from incorrect ones that we artificially generate. Our experiments evaluate different methods for generating these negative examples, as well as different embedding-based representations of the stories. Our best result obtains 67.2% accuracy on the test set, outperforming the existing top baseline of 58.5%.
%R 10.18653/v1/W17-0911
%U https://aclanthology.org/W17-0911
%U https://doi.org/10.18653/v1/W17-0911
%P 74-80
Markdown (Informal)
[An RNN-based Binary Classifier for the Story Cloze Test](https://aclanthology.org/W17-0911) (Roemmele et al., LSDSem 2017)
ACL
- Melissa Roemmele, Sosuke Kobayashi, Naoya Inoue, and Andrew Gordon. 2017. An RNN-based Binary Classifier for the Story Cloze Test. In Proceedings of the 2nd Workshop on Linking Models of Lexical, Sentential and Discourse-level Semantics, pages 74–80, Valencia, Spain. Association for Computational Linguistics.