@inproceedings{mohammadi-etal-2017-native,
title = "Native Language Identification Using a Mixture of Character and Word N-grams",
author = "Mohammadi, Elham and
Veisi, Hadi and
Amini, Hessam",
editor = "Tetreault, Joel and
Burstein, Jill and
Leacock, Claudia and
Yannakoudakis, Helen",
booktitle = "Proceedings of the 12th Workshop on Innovative Use of {NLP} for Building Educational Applications",
month = sep,
year = "2017",
address = "Copenhagen, Denmark",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W17-5022",
doi = "10.18653/v1/W17-5022",
pages = "210--216",
abstract = "Native language identification (NLI) is the task of determining an author{'}s native language, based on a piece of his/her writing in a second language. In recent years, NLI has received much attention due to its challenging nature and its applications in language pedagogy and forensic linguistics. We participated in the NLI2017 shared task under the name UT-DSP. In our effort to implement a method for native language identification, we made use of a fusion of character and word N-grams, and achieved an optimal F1-Score of 77.64{\%}, using both essay and speech transcription datasets.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="mohammadi-etal-2017-native">
<titleInfo>
<title>Native Language Identification Using a Mixture of Character and Word N-grams</title>
</titleInfo>
<name type="personal">
<namePart type="given">Elham</namePart>
<namePart type="family">Mohammadi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hadi</namePart>
<namePart type="family">Veisi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hessam</namePart>
<namePart type="family">Amini</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 12th Workshop on Innovative Use of NLP for Building Educational Applications</title>
</titleInfo>
<name type="personal">
<namePart type="given">Joel</namePart>
<namePart type="family">Tetreault</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jill</namePart>
<namePart type="family">Burstein</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Claudia</namePart>
<namePart type="family">Leacock</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Helen</namePart>
<namePart type="family">Yannakoudakis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Copenhagen, Denmark</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Native language identification (NLI) is the task of determining an author’s native language, based on a piece of his/her writing in a second language. In recent years, NLI has received much attention due to its challenging nature and its applications in language pedagogy and forensic linguistics. We participated in the NLI2017 shared task under the name UT-DSP. In our effort to implement a method for native language identification, we made use of a fusion of character and word N-grams, and achieved an optimal F1-Score of 77.64%, using both essay and speech transcription datasets.</abstract>
<identifier type="citekey">mohammadi-etal-2017-native</identifier>
<identifier type="doi">10.18653/v1/W17-5022</identifier>
<location>
<url>https://aclanthology.org/W17-5022</url>
</location>
<part>
<date>2017-09</date>
<extent unit="page">
<start>210</start>
<end>216</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Native Language Identification Using a Mixture of Character and Word N-grams
%A Mohammadi, Elham
%A Veisi, Hadi
%A Amini, Hessam
%Y Tetreault, Joel
%Y Burstein, Jill
%Y Leacock, Claudia
%Y Yannakoudakis, Helen
%S Proceedings of the 12th Workshop on Innovative Use of NLP for Building Educational Applications
%D 2017
%8 September
%I Association for Computational Linguistics
%C Copenhagen, Denmark
%F mohammadi-etal-2017-native
%X Native language identification (NLI) is the task of determining an author’s native language, based on a piece of his/her writing in a second language. In recent years, NLI has received much attention due to its challenging nature and its applications in language pedagogy and forensic linguistics. We participated in the NLI2017 shared task under the name UT-DSP. In our effort to implement a method for native language identification, we made use of a fusion of character and word N-grams, and achieved an optimal F1-Score of 77.64%, using both essay and speech transcription datasets.
%R 10.18653/v1/W17-5022
%U https://aclanthology.org/W17-5022
%U https://doi.org/10.18653/v1/W17-5022
%P 210-216
Markdown (Informal)
[Native Language Identification Using a Mixture of Character and Word N-grams](https://aclanthology.org/W17-5022) (Mohammadi et al., BEA 2017)
ACL