@inproceedings{singh-etal-2018-iit,
title = "{IIT} ({BHU}) Varanasi at {MSR}-{SRST} 2018: A Language Model Based Approach for Natural Language Generation",
author = "Singh, Shreyansh and
Sharma, Ayush and
Chawla, Avi and
Singh, A.K.",
editor = "Mille, Simon and
Belz, Anja and
Bohnet, Bernd and
Pitler, Emily and
Wanner, Leo",
booktitle = "Proceedings of the First Workshop on Multilingual Surface Realisation",
month = jul,
year = "2018",
address = "Melbourne, Australia",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W18-3603",
doi = "10.18653/v1/W18-3603",
pages = "29--34",
abstract = "This paper describes our submission system for the Shallow Track of Surface Realization Shared Task 2018 (SRST{'}18). The task was to convert genuine UD structures, from which word order information had been removed and the tokens had been lemmatized, into their correct sentential form. We divide the problem statement into two parts, word reinflection and correct word order prediction. For the first sub-problem, we use a Long Short Term Memory based Encoder-Decoder approach. For the second sub-problem, we present a Language Model (LM) based approach. We apply two different sub-approaches in the LM Based approach and the combined result of these two approaches is considered as the final output of the system.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="singh-etal-2018-iit">
<titleInfo>
<title>IIT (BHU) Varanasi at MSR-SRST 2018: A Language Model Based Approach for Natural Language Generation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Shreyansh</namePart>
<namePart type="family">Singh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ayush</namePart>
<namePart type="family">Sharma</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Avi</namePart>
<namePart type="family">Chawla</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">A</namePart>
<namePart type="given">K</namePart>
<namePart type="family">Singh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the First Workshop on Multilingual Surface Realisation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Simon</namePart>
<namePart type="family">Mille</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anja</namePart>
<namePart type="family">Belz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bernd</namePart>
<namePart type="family">Bohnet</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Emily</namePart>
<namePart type="family">Pitler</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Leo</namePart>
<namePart type="family">Wanner</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Melbourne, Australia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper describes our submission system for the Shallow Track of Surface Realization Shared Task 2018 (SRST’18). The task was to convert genuine UD structures, from which word order information had been removed and the tokens had been lemmatized, into their correct sentential form. We divide the problem statement into two parts, word reinflection and correct word order prediction. For the first sub-problem, we use a Long Short Term Memory based Encoder-Decoder approach. For the second sub-problem, we present a Language Model (LM) based approach. We apply two different sub-approaches in the LM Based approach and the combined result of these two approaches is considered as the final output of the system.</abstract>
<identifier type="citekey">singh-etal-2018-iit</identifier>
<identifier type="doi">10.18653/v1/W18-3603</identifier>
<location>
<url>https://aclanthology.org/W18-3603</url>
</location>
<part>
<date>2018-07</date>
<extent unit="page">
<start>29</start>
<end>34</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T IIT (BHU) Varanasi at MSR-SRST 2018: A Language Model Based Approach for Natural Language Generation
%A Singh, Shreyansh
%A Sharma, Ayush
%A Chawla, Avi
%A Singh, A. K.
%Y Mille, Simon
%Y Belz, Anja
%Y Bohnet, Bernd
%Y Pitler, Emily
%Y Wanner, Leo
%S Proceedings of the First Workshop on Multilingual Surface Realisation
%D 2018
%8 July
%I Association for Computational Linguistics
%C Melbourne, Australia
%F singh-etal-2018-iit
%X This paper describes our submission system for the Shallow Track of Surface Realization Shared Task 2018 (SRST’18). The task was to convert genuine UD structures, from which word order information had been removed and the tokens had been lemmatized, into their correct sentential form. We divide the problem statement into two parts, word reinflection and correct word order prediction. For the first sub-problem, we use a Long Short Term Memory based Encoder-Decoder approach. For the second sub-problem, we present a Language Model (LM) based approach. We apply two different sub-approaches in the LM Based approach and the combined result of these two approaches is considered as the final output of the system.
%R 10.18653/v1/W18-3603
%U https://aclanthology.org/W18-3603
%U https://doi.org/10.18653/v1/W18-3603
%P 29-34
Markdown (Informal)
[IIT (BHU) Varanasi at MSR-SRST 2018: A Language Model Based Approach for Natural Language Generation](https://aclanthology.org/W18-3603) (Singh et al., ACL 2018)
ACL