@inproceedings{coltekin-2019-cross,
title = "Cross-lingual morphological inflection with explicit alignment",
author = {{\c{C}}{\"o}ltekin, {\c{C}}a{\u{g}}r{\i}},
editor = "Nicolai, Garrett and
Cotterell, Ryan",
booktitle = "Proceedings of the 16th Workshop on Computational Research in Phonetics, Phonology, and Morphology",
month = aug,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W19-4209",
doi = "10.18653/v1/W19-4209",
pages = "71--79",
abstract = "This paper describes two related systems for cross-lingual morphological inflection for SIGMORPHON 2019 Shared Task participation. Both sets of results submitted to the shared task for evaluation are obtained using a simple approach of predicting transducer actions based on initial alignments on the training set, where cross-lingual transfer is limited to only using the high-resource language data as additional training set. The performance of the system does not reach the performance of the top two systems in the competition. However, we show that results can be improved with further tuning. We also present further analyses demonstrating that the cross-lingual gain is rather modest.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="coltekin-2019-cross">
<titleInfo>
<title>Cross-lingual morphological inflection with explicit alignment</title>
</titleInfo>
<name type="personal">
<namePart type="given">Çağrı</namePart>
<namePart type="family">Çöltekin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 16th Workshop on Computational Research in Phonetics, Phonology, and Morphology</title>
</titleInfo>
<name type="personal">
<namePart type="given">Garrett</namePart>
<namePart type="family">Nicolai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ryan</namePart>
<namePart type="family">Cotterell</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Florence, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper describes two related systems for cross-lingual morphological inflection for SIGMORPHON 2019 Shared Task participation. Both sets of results submitted to the shared task for evaluation are obtained using a simple approach of predicting transducer actions based on initial alignments on the training set, where cross-lingual transfer is limited to only using the high-resource language data as additional training set. The performance of the system does not reach the performance of the top two systems in the competition. However, we show that results can be improved with further tuning. We also present further analyses demonstrating that the cross-lingual gain is rather modest.</abstract>
<identifier type="citekey">coltekin-2019-cross</identifier>
<identifier type="doi">10.18653/v1/W19-4209</identifier>
<location>
<url>https://aclanthology.org/W19-4209</url>
</location>
<part>
<date>2019-08</date>
<extent unit="page">
<start>71</start>
<end>79</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Cross-lingual morphological inflection with explicit alignment
%A Çöltekin, Çağrı
%Y Nicolai, Garrett
%Y Cotterell, Ryan
%S Proceedings of the 16th Workshop on Computational Research in Phonetics, Phonology, and Morphology
%D 2019
%8 August
%I Association for Computational Linguistics
%C Florence, Italy
%F coltekin-2019-cross
%X This paper describes two related systems for cross-lingual morphological inflection for SIGMORPHON 2019 Shared Task participation. Both sets of results submitted to the shared task for evaluation are obtained using a simple approach of predicting transducer actions based on initial alignments on the training set, where cross-lingual transfer is limited to only using the high-resource language data as additional training set. The performance of the system does not reach the performance of the top two systems in the competition. However, we show that results can be improved with further tuning. We also present further analyses demonstrating that the cross-lingual gain is rather modest.
%R 10.18653/v1/W19-4209
%U https://aclanthology.org/W19-4209
%U https://doi.org/10.18653/v1/W19-4209
%P 71-79
Markdown (Informal)
[Cross-lingual morphological inflection with explicit alignment](https://aclanthology.org/W19-4209) (Çöltekin, ACL 2019)
ACL