Abul Hasnat
2024
SemEval-2024 Task 4: Multilingual Detection of Persuasion Techniques in Memes
Dimitar Dimitrov
|
Firoj Alam
|
Maram Hasanain
|
Abul Hasnat
|
Fabrizio Silvestri
|
Preslav Nakov
|
Giovanni Da San Martino
Proceedings of the 18th International Workshop on Semantic Evaluation (SemEval-2024)
The automatic identification of misleading and persuasive content has emerged as a significant issue among various stakeholders, including social media platforms, policymakers, and the broader society. To tackle this issue within the context of memes, we organized a shared task at SemEval-2024, focusing on the multilingual detection of persuasion techniques. This paper outlines the dataset, the organization of the task, the evaluation framework, the outcomes, and the systems that participated. The task targets memes in four languages, with the inclusion of three surprise test datasets in Bulgarian, North Macedonian, and Arabic. It encompasses three subtasks: (i) identifying whether a meme utilizes a persuasion technique; (ii) identifying persuasion techniques within the meme’s ”textual content”; and (iii) identifying persuasion techniques across both the textual and visual components of the meme (a multimodal task). Furthermore, due to the complex nature of persuasion techniques, we present a hierarchy that groups the 22 persuasion techniques into several levels of categories. This became one of the attractive shared tasks in SemEval 2024, with 153 teams registered, 48 teams submitting results, and finally, 32 system description papers submitted.
Search
Co-authors
- Dimitar Dimitrov 1
- Firoj Alam 1
- Maram Hasanain 1
- Fabrizio Silvestri 1
- Preslav Nakov 1
- show all...