This paper presents a novel Dialectal Sound and Vowelization Recovery framework, designed to recognize borrowed and dialectal sounds within phonologically diverse and dialect-rich languages, that extends beyond its standard orthographic sound sets. The proposed framework utilized quantized sequence of input with(out) continuous pretrained self-supervised representation. We show the efficacy of the pipeline using limited data for Arabic, a dialect-rich language containing more than 22 major dialects. Phonetically correct transcribed speech resources for dialectal Arabic is scare. Therefore, we introduce ArabVoice15, a first of its kind, curated test set featuring 5 hours of dialectal speech across 15 Arab countries, with phonetically accurate transcriptions, including borrowed and dialect-specific sounds. We described in detail the annotation guideline along with the analysis of the dialectal confusion pairs. Our extensive evaluation includes both subjective – human perception tests and objective measures. Our empirical results, reported with three test sets, show that with only one and half hours of training data, our model improve character error rate by ≈7% in ArabVoice15 compared to the baseline.
Recent advancements in Large Language Models (LLMs) have significantly influenced the landscape of language and speech research. Despite this progress, these models lack specific benchmarking against state-of-the-art (SOTA) models tailored to particular languages and tasks. LAraBench addresses this gap for Arabic Natural Language Processing (NLP) and Speech Processing tasks, including sequence tagging and content classification across different domains. We utilized models such as GPT-3.5-turbo, GPT-4, BLOOMZ, Jais-13b-chat, Whisper, and USM, employing zero and few-shot learning techniques to tackle 33 distinct tasks across 61 publicly available datasets. This involved 98 experimental setups, encompassing ~296K data points, ~46 hours of speech, and 30 sentences for Text-to-Speech (TTS). This effort resulted in 330+ sets of experiments. Our analysis focused on measuring the performance gap between SOTA models and LLMs. The overarching trend observed was that SOTA models generally outperformed LLMs in zero-shot learning, with a few exceptions. Notably, larger computational models with few-shot learning techniques managed to reduce these performance gaps. Our findings provide valuable insights into the applicability of LLMs for Arabic NLP and speech processing tasks.
The recent development and success of Large Language Models (LLMs) necessitate an evaluation of their performance across diverse NLP tasks in different languages. Although several frameworks have been developed and made publicly available, their customization capabilities for specific tasks and datasets are often complex for different users. In this study, we introduce the LLMeBench framework, which can be seamlessly customized to evaluate LLMs for any NLP task, regardless of language. The framework features generic dataset loaders, several model providers, and pre-implements most standard evaluation metrics. It supports in-context learning with zero- and few-shot settings. A specific dataset and task can be evaluated for a given LLM in less than 20 lines of code while allowing full flexibility to extend the framework for custom datasets, models, or tasks. The framework has been tested on 31 unique NLP tasks using 53 publicly available datasets within 90 experimental setups, involving approximately 296K data points. We open-sourced LLMeBench for the community (https://github.com/qcri/LLMeBench/) and a video demonstrating the framework is available online (https://youtu.be/9cC2m_abk3A).
Pronunciation assessment and its application in computer-aided pronunciation training (CAPT) have seen impressive progress in recent years. With the rapid growth in language processing and deep learning over the past few years, there is a need for an updated review. In this paper, we review methods employed in pronunciation assessment for both phonemic and prosodic. We categorize the main challenges observed in prominent research trends, and highlight existing limitations, and available resources. This is followed by a discussion of the remaining challenges and possible directions for future work.
We introduce the largest transcribed Arabic speech corpus, QASR, collected from the broadcast domain. This multi-dialect speech dataset contains 2,000 hours of speech sampled at 16kHz crawled from Aljazeera news channel. The dataset is released with lightly supervised transcriptions, aligned with the audio segments. Unlike previous datasets, QASR contains linguistically motivated segmentation, punctuation, speaker information among others. QASR is suitable for training and evaluating speech recognition systems, acoustics- and/or linguistics- based Arabic dialect identification, punctuation restoration, speaker identification, speaker linking, and potentially other NLP modules for spoken data. In addition to QASR transcription, we release a dataset of 130M words to aid in designing and training a better language model. We show that end-to-end automatic speech recognition trained on QASR reports a competitive word error rate compared to the previous MGB-2 corpus. We report baseline results for downstream natural language processing tasks such as named entity recognition using speech transcript. We also report the first baseline for Arabic punctuation restoration. We make the corpus available for the research community.
Predicting the political bias and the factuality of reporting of entire news outlets are critical elements of media profiling, which is an understudied but an increasingly important research direction. The present level of proliferation of fake, biased, and propagandistic content online has made it impossible to fact-check every single suspicious claim, either manually or automatically. Thus, it has been proposed to profile entire news outlets and to look for those that are likely to publish fake or biased content. This makes it possible to detect likely “fake news” the moment they are published, by simply checking the reliability of their source. From a practical perspective, political bias and factuality of reporting have a linguistic aspect but also a social context. Here, we study the impact of both, namely (i) what was written (i.e., what was published by the target medium, and how it describes itself in Twitter) vs. (ii) who reads it (i.e., analyzing the target medium’s audience on social media). We further study (iii) what was written about the target medium (in Wikipedia). The evaluation results show that what was written matters most, and we further show that putting all information sources together yields huge improvements over the current state-of-the-art.
We present the results and the findings of the Second VarDial Evaluation Campaign on Natural Language Processing (NLP) for Similar Languages, Varieties and Dialects. The campaign was organized as part of the fifth edition of the VarDial workshop, collocated with COLING’2018. This year, the campaign included five shared tasks, including two task re-runs – Arabic Dialect Identification (ADI) and German Dialect Identification (GDI) –, and three new tasks – Morphosyntactic Tagging of Tweets (MTT), Discriminating between Dutch and Flemish in Subtitles (DFS), and Indo-Aryan Language Identification (ILI). A total of 24 teams submitted runs across the five shared tasks, and contributed 22 system description papers, which were included in the VarDial workshop proceedings and are referred to in this report.
Measuring the performance of automatic speech recognition (ASR) systems requires manually transcribed data in order to compute the word error rate (WER), which is often time-consuming and expensive. In this paper, we propose a novel approach to estimate WER, or e-WER, which does not require a gold-standard transcription of the test set. Our e-WER framework uses a comprehensive set of features: ASR recognised text, character recognition results to complement recognition output, and internal decoder features. We report results for the two features; black-box and glass-box using unseen 24 Arabic broadcast programs. Our system achieves 16.9% WER root mean squared error (RMSE) across 1,400 sentences. The estimated overall WER e-WER was 25.3% for the three hours test set, while the actual WER was 28.5%.
This paper presents QCRI’s Arabic-to-English live speech translation system. It features modern web technologies to capture live audio, and broadcasts Arabic transcriptions and English translations simultaneously. Our Kaldi-based ASR system uses the Time Delay Neural Network (TDNN) architecture, while our Machine Translation (MT) system uses both phrase-based and neural frameworks. Although our neural MT system is slower than the phrase-based system, it produces significantly better translations and is memory efficient. The demo is available at https://st.qcri.org/demos/livetranslation.
We present the first prototype of the SUMMA Platform: an integrated platform for multilingual media monitoring. The platform contains a rich suite of low-level and high-level natural language processing technologies: automatic speech recognition of broadcast media, machine translation, automated tagging and classification of named entities, semantic parsing to detect relationships between entities, and automatic construction / augmentation of factual knowledge bases. Implemented on the Docker platform, it can easily be deployed, customised, and scaled to large volumes of incoming media streams.
We present the results of the VarDial Evaluation Campaign on Natural Language Processing (NLP) for Similar Languages, Varieties and Dialects, which we organized as part of the fourth edition of the VarDial workshop at EACL’2017. This year, we included four shared tasks: Discriminating between Similar Languages (DSL), Arabic Dialect Identification (ADI), German Dialect Identification (GDI), and Cross-lingual Dependency Parsing (CLP). A total of 19 teams submitted runs across the four tasks, and 15 of them wrote system description papers.
We present the results of the third edition of the Discriminating between Similar Languages (DSL) shared task, which was organized as part of the VarDial’2016 workshop at COLING’2016. The challenge offered two subtasks: subtask 1 focused on the identification of very similar languages and language varieties in newswire texts, whereas subtask 2 dealt with Arabic dialect identification in speech transcripts. A total of 37 teams registered to participate in the task, 24 teams submitted test results, and 20 teams also wrote system description papers. High-order character n-grams were the most successful feature, and the best classification approaches included traditional supervised learning methods such as SVM, logistic regression, and language models, while deep learning approaches did not perform very well.
This paper reports results in building an Egyptian Arabic speech recognition system as an example for under-resourced languages. We investigated different approaches to build the system using 10 hours for training the acoustic model, and results for both grapheme system and phoneme system using MADA. The phoneme-based system shows better results than the grapheme-based system. In this paper, we explore the use of tweets written in dialectal Arabic. Using 880K Egyptian tweets reduced the Out Of Vocabulary (OOV) rate from 15.1% to 3.2% and the WER from 59.6% to 44.7%, a relative gain 25% in WER.