Alex Warstadt


2024

pdf bib
Automatic Annotation of Grammaticality in Child-Caregiver Conversations
Mitja Nikolaus | Abhishek Agrawal | Petros Kaklamanis | Alex Warstadt | Abdellah Fourtassi
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

The acquisition of grammar has been a central question to adjudicate between theories of language acquisition. In order to conduct faster, more reproducible, and larger-scale corpus studies on grammaticality in child-caregiver conversations, tools for automatic annotation can offer an effective alternative to tedious manual annotation. We propose a coding scheme for context-dependent grammaticality in child-caregiver conversations and annotate more than 4,000 utterances from a large corpus of transcribed conversations. Based on these annotations, we train and evaluate a range of NLP models. Our results show that fine-tuned Transformer-based models perform best, achieving human inter-annotation agreement levels. As a first application and sanity check of this tool, we use the trained models to annotate a corpus almost two orders of magnitude larger than the manually annotated data and verify that children’s grammaticality shows a steady increase with age. This work contributes to the growing literature on applying state-of-the-art NLP methods to help study child language acquisition at scale.

2023

pdf bib
Reconstruction Probing
Najoung Kim | Jatin Khilnani | Alex Warstadt | Abdelrahim Qaddoumi
Findings of the Association for Computational Linguistics: ACL 2023

We propose reconstruction probing, a new analysis method for contextualized representations based on reconstruction probabilities in masked language models (MLMs). This method relies on comparing the reconstruction probabilities of tokens in a given sequence when conditioned on the representation of a single token that has been fully contextualized and when conditioned on only the decontextualized lexical prior of the model. This comparison can be understood as quantifying the contribution of contextualization towards reconstruction—the difference in the reconstruction probabilities can only be attributed to the representational change of the single token induced by contextualization. We apply this analysis to three MLMs and find that contextualization boosts reconstructability of tokens that are close to the token being reconstructed in terms of linear and syntactic distance. Furthermore, we extend our analysis to finer-grained decomposition of contextualized representations, and we find that these boosts are largely attributable to static and positional embeddings at the input layer.

pdf bib
Quantifying the redundancy between prosody and text
Lukas Wolf | Tiago Pimentel | Evelina Fedorenko | Ryan Cotterell | Alex Warstadt | Ethan Wilcox | Tamar Regev
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Prosody—the suprasegmental component of speech, including pitch, loudness, and tempo—carries critical aspects of meaning. However, the relationship between the information conveyed by prosody vs. by the words themselves remains poorly understood. We use large language models (LLMs) to estimate how much information is redundant between prosody and the words themselves. Using a large spoken corpus of English audiobooks, we extract prosodic features aligned to individual words and test how well they can be predicted from LLM embeddings, compared to non-contextual word embeddings. We find a high degree of redundancy between the information carried by the words and prosodic information across several prosodic features, including intensity, duration, pauses, and pitch contours. Furthermore, a word’s prosodic information is redundant with both the word itself and the context preceding as well as following it. Still, we observe that prosodic features can not be fully predicted from text, suggesting that prosody carries information above and beyond the words. Along with this paper, we release a general-purpose data processing pipeline for quantifying the relationship between linguistic information and extra-linguistic features.

pdf bib
Generalizing Backpropagation for Gradient-Based Interpretability
Kevin Du | Lucas Torroba Hennigen | Niklas Stoehr | Alex Warstadt | Ryan Cotterell
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Many popular feature-attribution methods for interpreting deep neural networks rely on computing the gradients of a model’s output with respect to its inputs. While these methods can indicate which input features may be important for the model’s prediction, they reveal little about the inner workings of the model itself. In this paper, we observe that the gradient computation of a model is a special case of a more general formulation using semirings. This observation allows us to generalize the backpropagation algorithm to efficiently compute other interpretable statistics about the gradient graph of a neural network, such as the highest-weighted path and entropy. We implement this generalized algorithm, evaluate it on synthetic datasets to better understand the statistics it computes, and apply it to study BERT’s behavior on the subject–verb number agreement task (SVA). With this method, we (a) validate that the amount of gradient flow through a component of a model reflects its importance to a prediction and (b) for SVA, identify which pathways of the self-attention mechanism are most important.

pdf bib
Proceedings of the BabyLM Challenge at the 27th Conference on Computational Natural Language Learning
Alex Warstadt | Aaron Mueller | Leshem Choshen | Ethan Wilcox | Chengxu Zhuang | Juan Ciro | Rafael Mosquera | Bhargavi Paranjabe | Adina Williams | Tal Linzen | Ryan Cotterell
Proceedings of the BabyLM Challenge at the 27th Conference on Computational Natural Language Learning

pdf bib
Findings of the BabyLM Challenge: Sample-Efficient Pretraining on Developmentally Plausible Corpora
Alex Warstadt | Aaron Mueller | Leshem Choshen | Ethan Wilcox | Chengxu Zhuang | Juan Ciro | Rafael Mosquera | Bhargavi Paranjabe | Adina Williams | Tal Linzen | Ryan Cotterell
Proceedings of the BabyLM Challenge at the 27th Conference on Computational Natural Language Learning

2022

pdf bib
Entailment Semantics Can Be Extracted from an Ideal Language Model
William Merrill | Alex Warstadt | Tal Linzen
Proceedings of the 26th Conference on Computational Natural Language Learning (CoNLL)

Language models are often trained on text alone, without additional grounding. There is debate as to how much of natural language semantics can be inferred from such a procedure. We prove that entailment judgments between sentences can be extracted from an ideal language model that has perfectly learned its target distribution, assuming the training sentences are generated by Gricean agents, i.e., agents who follow fundamental principles of communication from the linguistic theory of pragmatics. We also show entailment judgments can be decoded from the predictions of a language model trained on such Gricean data. Our results reveal a pathway for understanding the semantic information encoded in unlabeled linguistic data and a potential framework for extracting semantics from language models.

pdf bib
What Makes Reading Comprehension Questions Difficult?
Saku Sugawara | Nikita Nangia | Alex Warstadt | Samuel Bowman
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

For a natural language understanding benchmark to be useful in research, it has to consist of examples that are diverse and difficult enough to discriminate among current and near-future state-of-the-art systems. However, we do not yet know how best to select text sources to collect a variety of challenging examples. In this study, we crowdsource multiple-choice reading comprehension questions for passages taken from seven qualitatively distinct sources, analyzing what attributes of passages contribute to the difficulty and question types of the collected examples. To our surprise, we find that passage source, length, and readability measures do not significantly affect question difficulty. Through our manual annotation of seven reasoning types, we observe several trends between passage sources and reasoning types, e.g., logical reasoning is more often required in questions written for technical passages. These results suggest that when creating a new benchmark dataset, selecting a diverse set of passages can help ensure a diverse range of question types, but that passage difficulty need not be a priority.

2021

pdf bib
CLiMP: A Benchmark for Chinese Language Model Evaluation
Beilei Xiang | Changbing Yang | Yu Li | Alex Warstadt | Katharina Kann
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume

Linguistically informed analyses of language models (LMs) contribute to the understanding and improvement of such models. Here, we introduce the corpus of Chinese linguistic minimal pairs (CLiMP) to investigate what knowledge Chinese LMs acquire. CLiMP consists of sets of 1000 minimal pairs (MPs) for 16 syntactic contrasts in Chinese, covering 9 major Chinese linguistic phenomena. The MPs are semi-automatically generated, and human agreement with the labels in CLiMP is 95.8%. We evaluate 11 different LMs on CLiMP, covering n-grams, LSTMs, and Chinese BERT. We find that classifier–noun agreement and verb complement selection are the phenomena that models generally perform best at. However, models struggle the most with the ba construction, binding, and filler-gap dependencies. Overall, Chinese BERT achieves an 81.8% average accuracy, while the performances of LSTMs and 5-grams are only moderately above chance level.

pdf bib
NOPE: A Corpus of Naturally-Occurring Presuppositions in English
Alicia Parrish | Sebastian Schuster | Alex Warstadt | Omar Agha | Soo-Hwan Lee | Zhuoye Zhao | Samuel R. Bowman | Tal Linzen
Proceedings of the 25th Conference on Computational Natural Language Learning

Understanding language requires grasping not only the overtly stated content, but also making inferences about things that were left unsaid. These inferences include presuppositions, a phenomenon by which a listener learns about new information through reasoning about what a speaker takes as given. Presuppositions require complex understanding of the lexical and syntactic properties that trigger them as well as the broader conversational context. In this work, we introduce the Naturally-Occurring Presuppositions in English (NOPE) Corpus to investigate the context-sensitivity of 10 different types of presupposition triggers and to evaluate machine learning models’ ability to predict human inferences. We find that most of the triggers we investigate exhibit moderate variability. We further find that transformer-based models draw correct inferences in simple cases involving presuppositions, but they fail to capture the minority of exceptional cases in which human judgments reveal complex interactions between context and triggers.

pdf bib
When Do You Need Billions of Words of Pretraining Data?
Yian Zhang | Alex Warstadt | Xiaocheng Li | Samuel R. Bowman
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

NLP is currently dominated by language models like RoBERTa which are pretrained on billions of words. But what exact knowledge or skills do Transformer LMs learn from large-scale pretraining that they cannot learn from less data? To explore this question, we adopt five styles of evaluation: classifier probing, information-theoretic probing, unsupervised relative acceptability judgments, unsupervised language model knowledge probing, and fine-tuning on NLU tasks. We then draw learning curves that track the growth of these different measures of model ability with respect to pretraining data volume using the MiniBERTas, a group of RoBERTa models pretrained on 1M, 10M, 100M and 1B words. We find that these LMs require only about 10M to 100M words to learn to reliably encode most syntactic and semantic features we test. They need a much larger quantity of data in order to acquire enough commonsense knowledge and other skills required to master typical downstream NLU tasks. The results suggest that, while the ability to encode linguistic features is almost certainly necessary for language understanding, it is likely that other, unidentified, forms of knowledge are the major drivers of recent improvements in language understanding among large pretrained models.

pdf bib
What Ingredients Make for an Effective Crowdsourcing Protocol for Difficult NLU Data Collection Tasks?
Nikita Nangia | Saku Sugawara | Harsh Trivedi | Alex Warstadt | Clara Vania | Samuel R. Bowman
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Crowdsourcing is widely used to create data for common natural language understanding tasks. Despite the importance of these datasets for measuring and refining model understanding of language, there has been little focus on the crowdsourcing methods used for collecting the datasets. In this paper, we compare the efficacy of interventions that have been proposed in prior work as ways of improving data quality. We use multiple-choice question answering as a testbed and run a randomized trial by assigning crowdworkers to write questions under one of four different data collection protocols. We find that asking workers to write explanations for their examples is an ineffective stand-alone strategy for boosting NLU example difficulty. However, we find that training crowdworkers, and then using an iterative process of collecting data, sending feedback, and qualifying workers based on expert judgments is an effective means of collecting challenging data. But using crowdsourced, instead of expert judgments, to qualify workers and send feedback does not prove to be effective. We observe that the data from the iterative protocol with expert assessments is more challenging by several measures. Notably, the human–model gap on the unanimous agreement portion of this data is, on average, twice as large as the gap for the baseline protocol data.

2020

pdf bib
BLiMP: The Benchmark of Linguistic Minimal Pairs for English
Alex Warstadt | Alicia Parrish | Haokun Liu | Anhad Mohananey | Wei Peng | Sheng-Fu Wang | Samuel R. Bowman
Transactions of the Association for Computational Linguistics, Volume 8

We introduce The Benchmark of Linguistic Minimal Pairs (BLiMP),1 a challenge set for evaluating the linguistic knowledge of language models (LMs) on major grammatical phenomena in English. BLiMP consists of 67 individual datasets, each containing 1,000 minimal pairs—that is, pairs of minimally different sentences that contrast in grammatical acceptability and isolate specific phenomenon in syntax, morphology, or semantics. We generate the data according to linguist-crafted grammar templates, and human aggregate agreement with the labels is 96.4%. We evaluate n-gram, LSTM, and Transformer (GPT-2 and Transformer-XL) LMs by observing whether they assign a higher probability to the acceptable sentence in each minimal pair. We find that state-of-the-art models identify morphological contrasts related to agreement reliably, but they struggle with some subtle semantic and syntactic phenomena, such as negative polarity items and extraction islands.

pdf bib
BLiMP: A Benchmark of Linguistic Minimal Pairs for English
Alex Warstadt | Alicia Parrish | Haokun Liu | Anhad Mohananey | Wei Peng | Sheng-Fu Wang | Samuel R. Bowman
Proceedings of the Society for Computation in Linguistics 2020

pdf bib
Are Natural Language Inference Models IMPPRESsive? Learning IMPlicature and PRESupposition
Paloma Jeretic | Alex Warstadt | Suvrat Bhooshan | Adina Williams
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Natural language inference (NLI) is an increasingly important task for natural language understanding, which requires one to infer whether a sentence entails another. However, the ability of NLI models to make pragmatic inferences remains understudied. We create an IMPlicature and PRESupposition diagnostic dataset (IMPPRES), consisting of 32K semi-automatically generated sentence pairs illustrating well-studied pragmatic inference types. We use IMPPRES to evaluate whether BERT, InferSent, and BOW NLI models trained on MultiNLI (Williams et al., 2018) learn to make pragmatic inferences. Although MultiNLI appears to contain very few pairs illustrating these inference types, we find that BERT learns to draw pragmatic inferences. It reliably treats scalar implicatures triggered by “some” as entailments. For some presupposition triggers like “only”, BERT reliably recognizes the presupposition as an entailment, even when the trigger is embedded under an entailment canceling operator like negation. BOW and InferSent show weaker evidence of pragmatic reasoning. We conclude that NLI training encourages models to learn some, but not all, pragmatic inferences.

pdf bib
Learning Which Features Matter: RoBERTa Acquires a Preference for Linguistic Generalizations (Eventually)
Alex Warstadt | Yian Zhang | Xiaocheng Li | Haokun Liu | Samuel R. Bowman
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

One reason pretraining on self-supervised linguistic tasks is effective is that it teaches models features that are helpful for language understanding. However, we want pretrained models to learn not only to represent linguistic features, but also to use those features preferentially during fine-turning. With this goal in mind, we introduce a new English-language diagnostic set called MSGS (the Mixed Signals Generalization Set), which consists of 20 ambiguous binary classification tasks that we use to test whether a pretrained model prefers linguistic or surface generalizations during finetuning. We pretrain RoBERTa from scratch on quantities of data ranging from 1M to 1B words and compare their performance on MSGS to the publicly available RoBERTa_BASE. We find that models can learn to represent linguistic features with little pretraining data, but require far more data to learn to prefer linguistic generalizations over surface ones. Eventually, with about 30B words of pretraining data, RoBERTa_BASE does consistently demonstrate a linguistic bias with some regularity. We conclude that while self-supervised pretraining is an effective way to learn helpful inductive biases, there is likely room to improve the rate at which models learn which features matter.

2019

pdf bib
Investigating BERT’s Knowledge of Language: Five Analysis Methods with NPIs
Alex Warstadt | Yu Cao | Ioana Grosu | Wei Peng | Hagen Blix | Yining Nie | Anna Alsop | Shikha Bordia | Haokun Liu | Alicia Parrish | Sheng-Fu Wang | Jason Phang | Anhad Mohananey | Phu Mon Htut | Paloma Jeretic | Samuel R. Bowman
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Though state-of-the-art sentence representation models can perform tasks requiring significant knowledge of grammar, it is an open question how best to evaluate their grammatical knowledge. We explore five experimental methods inspired by prior work evaluating pretrained sentence representation models. We use a single linguistic phenomenon, negative polarity item (NPI) licensing, as a case study for our experiments. NPIs like any are grammatical only if they appear in a licensing environment like negation (Sue doesn’t have any cats vs. *Sue has any cats). This phenomenon is challenging because of the variety of NPI licensing environments that exist. We introduce an artificially generated dataset that manipulates key features of NPI licensing for the experiments. We find that BERT has significant knowledge of these features, but its success varies widely across different experimental methods. We conclude that a variety of methods is necessary to reveal all relevant aspects of a model’s grammatical knowledge in a given domain.

pdf bib
Neural Network Acceptability Judgments
Alex Warstadt | Amanpreet Singh | Samuel R. Bowman
Transactions of the Association for Computational Linguistics, Volume 7

This paper investigates the ability of artificial neural networks to judge the grammatical acceptability of a sentence, with the goal of testing their linguistic competence. We introduce the Corpus of Linguistic Acceptability (CoLA), a set of 10,657 English sentences labeled as grammatical or ungrammatical from published linguistics literature. As baselines, we train several recurrent neural network models on acceptability classification, and find that our models outperform unsupervised models by Lau et al. (2016) on CoLA. Error-analysis on specific grammatical phenomena reveals that both Lau et al.’s models and ours learn systematic generalizations like subject-verb-object order. However, all models we test perform far below human level on a wide range of grammatical constructions.

pdf bib
Verb Argument Structure Alternations in Word and Sentence Embeddings
Katharina Kann | Alex Warstadt | Adina Williams | Samuel R. Bowman
Proceedings of the Society for Computation in Linguistics (SCiL) 2019