Alexander Erdmann


2021

pdf bib
Findings of the SIGMORPHON 2021 Shared Task on Unsupervised Morphological Paradigm Clustering
Adam Wiemerslage | Arya D. McCarthy | Alexander Erdmann | Garrett Nicolai | Manex Agirrezabal | Miikka Silfverberg | Mans Hulden | Katharina Kann
Proceedings of the 18th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology

We describe the second SIGMORPHON shared task on unsupervised morphology: the goal of the SIGMORPHON 2021 Shared Task on Unsupervised Morphological Paradigm Clustering is to cluster word types from a raw text corpus into paradigms. To this end, we release corpora for 5 development and 9 test languages, as well as gold partial paradigms for evaluation. We receive 14 submissions from 4 teams that follow different strategies, and the best performing system is based on adaptor grammars. Results vary significantly across languages. However, all systems are outperformed by a supervised lemmatizer, implying that there is still room for improvement.

2020

pdf bib
CAMeL Tools: An Open Source Python Toolkit for Arabic Natural Language Processing
Ossama Obeid | Nasser Zalmout | Salam Khalifa | Dima Taji | Mai Oudah | Bashar Alhafni | Go Inoue | Fadhl Eryani | Alexander Erdmann | Nizar Habash
Proceedings of the Twelfth Language Resources and Evaluation Conference

We present CAMeL Tools, a collection of open-source tools for Arabic natural language processing in Python. CAMeL Tools currently provides utilities for pre-processing, morphological modeling, Dialect Identification, Named Entity Recognition and Sentiment Analysis. In this paper, we describe the design of CAMeL Tools and the functionalities it provides.

pdf bib
The Paradigm Discovery Problem
Alexander Erdmann | Micha Elsner | Shijie Wu | Ryan Cotterell | Nizar Habash
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

This work treats the paradigm discovery problem (PDP), the task of learning an inflectional morphological system from unannotated sentences. We formalize the PDP and develop evaluation metrics for judging systems. Using currently available resources, we construct datasets for the task. We also devise a heuristic benchmark for the PDP and report empirical results on five diverse languages. Our benchmark system first makes use of word embeddings and string similarity to cluster forms by cell and by paradigm. Then, we bootstrap a neural transducer on top of the clustered data to predict words to realize the empty paradigm slots. An error analysis of our system suggests clustering by cell across different inflection classes is the most pressing challenge for future work.

pdf bib
Frugal Paradigm Completion
Alexander Erdmann | Tom Kenter | Markus Becker | Christian Schallhart
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Lexica distinguishing all morphologically related forms of each lexeme are crucial to many language technologies, yet building them is expensive. We propose a frugal paradigm completion approach that predicts all related forms in a morphological paradigm from as few manually provided forms as possible. It induces typological information during training which it uses to determine the best sources at test time. We evaluate our language-agnostic approach on 7 diverse languages. Compared to popular alternative approaches, ours reduces manual labor by 16-63% and is the most robust to typological variation.

2019

pdf bib
Practical, Efficient, and Customizable Active Learning for Named Entity Recognition in the Digital Humanities
Alexander Erdmann | David Joseph Wrisley | Benjamin Allen | Christopher Brown | Sophie Cohen-Bodénès | Micha Elsner | Yukun Feng | Brian Joseph | Béatrice Joyeux-Prunel | Marie-Catherine de Marneffe
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

Scholars in inter-disciplinary fields like the Digital Humanities are increasingly interested in semantic annotation of specialized corpora. Yet, under-resourced languages, imperfect or noisily structured data, and user-specific classification tasks make it difficult to meet their needs using off-the-shelf models. Manual annotation of large corpora from scratch, meanwhile, can be prohibitively expensive. Thus, we propose an active learning solution for named entity recognition, attempting to maximize a custom model’s improvement per additional unit of manual annotation. Our system robustly handles any domain or user-defined label set and requires no external resources, enabling quality named entity recognition for Humanities corpora where such resources are not available. Evaluating on typologically disparate languages and datasets, we reduce required annotation by 20-60% and greatly outperform a competitive active learning baseline.

pdf bib
A Little Linguistics Goes a Long Way: Unsupervised Segmentation with Limited Language Specific Guidance
Alexander Erdmann | Salam Khalifa | Mai Oudah | Nizar Habash | Houda Bouamor
Proceedings of the 16th Workshop on Computational Research in Phonetics, Phonology, and Morphology

We present de-lexical segmentation, a linguistically motivated alternative to greedy or other unsupervised methods, requiring only minimal language specific input. Our technique involves creating a small grammar of closed-class affixes which can be written in a few hours. The grammar over generates analyses for word forms attested in a raw corpus which are disambiguated based on features of the linguistic base proposed for each form. Extending the grammar to cover orthographic, morpho-syntactic or lexical variation is simple, making it an ideal solution for challenging corpora with noisy, dialect-inconsistent, or otherwise non-standard content. In two evaluations, we consistently outperform competitive unsupervised baselines and approach the performance of state-of-the-art supervised models trained on large amounts of data, providing evidence for the value of linguistic input during preprocessing.

2018

pdf bib
Complementary Strategies for Low Resourced Morphological Modeling
Alexander Erdmann | Nizar Habash
Proceedings of the Fifteenth Workshop on Computational Research in Phonetics, Phonology, and Morphology

Morphologically rich languages are challenging for natural language processing tasks due to data sparsity. This can be addressed either by introducing out-of-context morphological knowledge, or by developing machine learning architectures that specifically target data sparsity and/or morphological information. We find these approaches to complement each other in a morphological paradigm modeling task in Modern Standard Arabic, which, in addition to being morphologically complex, features ubiquitous ambiguity, exacerbating sparsity with noise. Given a small number of out-of-context rules describing closed class morphology, we combine them with word embeddings leveraging subword strings and noise reduction techniques. The combination outperforms both approaches individually by about 20% absolute. While morphological resources already exist for Modern Standard Arabic, our results inform how comparable resources might be constructed for non-standard dialects or any morphologically rich, low resourced language, given scarcity of time and funding.

pdf bib
Addressing Noise in Multidialectal Word Embeddings
Alexander Erdmann | Nasser Zalmout | Nizar Habash
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

Word embeddings are crucial to many natural language processing tasks. The quality of embeddings relies on large non-noisy corpora. Arabic dialects lack large corpora and are noisy, being linguistically disparate with no standardized spelling. We make three contributions to address this noise. First, we describe simple but effective adaptations to word embedding tools to maximize the informative content leveraged in each training sentence. Second, we analyze methods for representing disparate dialects in one embedding space, either by mapping individual dialects into a shared space or learning a joint model of all dialects. Finally, we evaluate via dictionary induction, showing that two metrics not typically reported in the task enable us to analyze our contributions’ effects on low and high frequency words. In addition to boosting performance between 2-53%, we specifically improve on noisy, low frequency forms without compromising accuracy on high frequency forms.

pdf bib
Noise-Robust Morphological Disambiguation for Dialectal Arabic
Nasser Zalmout | Alexander Erdmann | Nizar Habash
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)

User-generated text tends to be noisy with many lexical and orthographic inconsistencies, making natural language processing (NLP) tasks more challenging. The challenging nature of noisy text processing is exacerbated for dialectal content, where in addition to spelling and lexical differences, dialectal text is characterized with morpho-syntactic and phonetic variations. These issues increase sparsity in NLP models and reduce accuracy. We present a neural morphological tagging and disambiguation model for Egyptian Arabic, with various extensions to handle noisy and inconsistent content. Our models achieve about 5% relative error reduction (1.1% absolute improvement) for full morphological analysis, and around 22% relative error reduction (1.8% absolute improvement) for part-of-speech tagging, over a state-of-the-art baseline.

pdf bib
The MADAR Arabic Dialect Corpus and Lexicon
Houda Bouamor | Nizar Habash | Mohammad Salameh | Wajdi Zaghouani | Owen Rambow | Dana Abdulrahim | Ossama Obeid | Salam Khalifa | Fadhl Eryani | Alexander Erdmann | Kemal Oflazer
Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018)

pdf bib
Unified Guidelines and Resources for Arabic Dialect Orthography
Nizar Habash | Fadhl Eryani | Salam Khalifa | Owen Rambow | Dana Abdulrahim | Alexander Erdmann | Reem Faraj | Wajdi Zaghouani | Houda Bouamor | Nasser Zalmout | Sara Hassan | Faisal Al-Shargi | Sakhar Alkhereyf | Basma Abdulkareem | Ramy Eskander | Mohammad Salameh | Hind Saddiki
Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018)

2017

pdf bib
Low Resourced Machine Translation via Morpho-syntactic Modeling: The Case of Dialectal Arabic
Alexander Erdmann | Nizar Habash | Dima Taji | Houda Bouamor
Proceedings of Machine Translation Summit XVI: Research Track

2016

pdf bib
Challenges and Solutions for Latin Named Entity Recognition
Alexander Erdmann | Christopher Brown | Brian Joseph | Mark Janse | Petra Ajaka | Micha Elsner | Marie-Catherine de Marneffe
Proceedings of the Workshop on Language Technology Resources and Tools for Digital Humanities (LT4DH)

Although spanning thousands of years and genres as diverse as liturgy, historiography, lyric and other forms of prose and poetry, the body of Latin texts is still relatively sparse compared to English. Data sparsity in Latin presents a number of challenges for traditional Named Entity Recognition techniques. Solving such challenges and enabling reliable Named Entity Recognition in Latin texts can facilitate many down-stream applications, from machine translation to digital historiography, enabling Classicists, historians, and archaeologists for instance, to track the relationships of historical persons, places, and groups on a large scale. This paper presents the first annotated corpus for evaluating Named Entity Recognition in Latin, as well as a fully supervised model that achieves over 90% F-score on a held-out test set, significantly outperforming a competitive baseline. We also present a novel active learning strategy that predicts how many and which sentences need to be annotated for named entities in order to attain a specified degree of accuracy when recognizing named entities automatically in a given text. This maximizes the productivity of annotators while simultaneously controlling quality.