Alexander Gray


2023

pdf bib
Learning Symbolic Rules over Abstract Meaning Representations for Textual Reinforcement Learning
Subhajit Chaudhury | Sarathkrishna Swaminathan | Daiki Kimura | Prithviraj Sen | Keerthiram Murugesan | Rosario Uceda-Sosa | Michiaki Tatsubori | Achille Fokoue | Pavan Kapanipathi | Asim Munawar | Alexander Gray
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Text-based reinforcement learning agents have predominantly been neural network-based models with embeddings-based representation, learning uninterpretable policies that often do not generalize well to unseen games. On the other hand, neuro-symbolic methods, specifically those that leverage an intermediate formal representation, are gaining significant attention in language understanding tasks. This is because of their advantages ranging from inherent interpretability, the lesser requirement of training data, and being generalizable in scenarios with unseen data. Therefore, in this paper, we propose a modular, NEuro-Symbolic Textual Agent (NESTA) that combines a generic semantic parser with a rule induction system to learn abstract interpretable rules as policies. Our experiments on established text-based game benchmarks show that the proposed NESTA method outperforms deep reinforcement learning-based techniques by achieving better generalization to unseen test games and learning from fewer training interactions.

pdf bib
Learning Neuro-Symbolic World Models with Conversational Proprioception
Don Joven Agravante | Daiki Kimura | Michiaki Tatsubori | Asim Munawar | Alexander Gray
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

The recent emergence of Neuro-Symbolic Agent (NeSA) approaches to natural language-based interactions calls for the investigation of model-based approaches. In contrast to model-free approaches, which existing NeSAs take, learning an explicit world model has an interesting potential especially in the explainability, which is one of the key selling points of NeSA. To learn useful world models, we leverage one of the recent neuro-symbolic architectures, Logical Neural Networks (LNN). Here, we describe a method that can learn neuro-symbolic world models on the TextWorld-Commonsense set of games. We then show how this can be improved further by taking inspiration from the concept of proprioception, but for conversation. This is done by enhancing the internal logic state with a memory of previous actions while also guiding future actions by augmenting the learned model with constraints based on this memory. This greatly improves the game-solving agents performance in a TextWorld setting, where the advantage over the baseline is an 85% average steps reduction and x2.3 average score.

pdf bib
MISMATCH: Fine-grained Evaluation of Machine-generated Text with Mismatch Error Types
Keerthiram Murugesan | Sarathkrishna Swaminathan | Soham Dan | Subhajit Chaudhury | Chulaka Gunasekara | Maxwell Crouse | Diwakar Mahajan | Ibrahim Abdelaziz | Achille Fokoue | Pavan Kapanipathi | Salim Roukos | Alexander Gray
Findings of the Association for Computational Linguistics: ACL 2023

With the growing interest in large language models, the need for evaluating the quality of machine text compared to reference (typically human-generated) text has become focal attention. Most recent works focus either on task-specific evaluation metrics or study the properties of machine-generated text captured by the existing metrics. In this work, we propose a new evaluation scheme to model human judgments in 7 NLP tasks, based on the fine-grained mismatches between a pair of texts. Inspired by the recent efforts in several NLP tasks for fine-grained evaluation, we introduce a set of 13 mismatch error types such as spatial/geographic errors, entity errors, etc, to guide the model for better prediction of human judgments. We propose a neural framework for evaluating machine texts that uses these mismatch error types as auxiliary tasks and re-purposes the existing single-number evaluation metrics as additional scalar features, in addition to textual features extracted from the machine and reference texts. Our experiments reveal key insights about the existing metrics via the mismatch errors. We show that the mismatch errors between the sentence pairs on the held-out datasets from 7 NLP tasks align well with the human evaluation.

pdf bib
Self-Supervised Rule Learning to Link Text Segments to Relational Elements of Structured Knowledge
Shajith Ikbal | Udit Sharma | Hima Karanam | Sumit Neelam | Ronny Luss | Dheeraj Sreedhar | Pavan Kapanipathi | Naweed Khan | Kyle Erwin | Ndivhuwo Makondo | Ibrahim Abdelaziz | Achille Fokoue | Alexander Gray | Maxwell Crouse | Subhajit Chaudhury | Chitra Subramanian
Findings of the Association for Computational Linguistics: EMNLP 2023

We present a neuro-symbolic approach to self-learn rules that serve as interpretable knowledge to perform relation linking in knowledge base question answering systems. These rules define natural language text predicates as a weighted mixture of knowledge base paths. The weights learned during training effectively serve the mapping needed to perform relation linking. We use popular masked training strategy to self-learn the rules. A key distinguishing aspect of our work is that the masked training operate over logical forms of the sentence instead of their natural language text form. This offers opportunity to extract extended context information from the structured knowledge source and use that to build robust and human readable rules. We evaluate accuracy and usefulness of such learned rules by utilizing them for prediction of missing kinship relation in CLUTRR dataset and relation linking in a KBQA system using SWQ-WD dataset. Results demonstrate the effectiveness of our approach - its generalizability, interpretability and ability to achieve an average performance gain of 17% on CLUTRR dataset.

2022

pdf bib
Logical Neural Networks for Knowledge Base Completion with Embeddings & Rules
Prithviraj Sen | Breno William Carvalho | Ibrahim Abdelaziz | Pavan Kapanipathi | Salim Roukos | Alexander Gray
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Knowledge base completion (KBC) has benefitted greatly by learning explainable rules in an human-interpretable dialect such as first-order logic. Rule-based KBC has so far, mainly focussed on learning one of two types of rules: conjunction-of-disjunctions and disjunction-of-conjunctions. We qualitatively show, via examples, that one of these has an advantage over the other when it comes to achieving high quality KBC. To the best of our knowledge, we are the first to propose learning both kinds of rules within a common framework. To this end, we propose to utilize logical neural networks (LNN), a powerful neuro-symbolic AI framework that can express both kinds of rules and learn these end-to-end using gradient-based optimization. Our in-depth experiments show that our LNN-based approach to learning rules for KBC leads to roughly 10% relative improvements, if not more, over SotA rule-based KBC methods. Moreover, by showing how to combine our proposed methods with knowledge graph embeddings we further achieve an additional 7.5% relative improvement.

pdf bib
X-FACTOR: A Cross-metric Evaluation of Factual Correctness in Abstractive Summarization
Subhajit Chaudhury | Sarathkrishna Swaminathan | Chulaka Gunasekara | Maxwell Crouse | Srinivas Ravishankar | Daiki Kimura | Keerthiram Murugesan | Ramón Fernandez Astudillo | Tahira Naseem | Pavan Kapanipathi | Alexander Gray
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Abstractive summarization models often produce factually inconsistent summaries that are not supported by the original article. Recently, a number of fact-consistent evaluation techniques have been proposed to address this issue; however, a detailed analysis of how these metrics agree with one another has yet to be conducted. In this paper, we present X-FACTOR, a cross-evaluation of three high-performing fact-aware abstractive summarization methods. First, we show that summarization models are often fine-tuned on datasets that contain factually inconsistent summaries and propose a fact-aware filtering mechanism that improves the quality of training data and, consequently, the factuality of these models. Second, we propose a corrector module that can be used to improve the factual consistency of generated summaries. Third, we present a re-ranking technique that samples summary instances from the output distribution of a summarization model and re-ranks the sampled instances based on their factuality. Finally, we provide a detailed cross-metric agreement analysis that shows how tuning a model to output summaries based on a particular factuality metric influences factuality as determined by the other metrics. Our goal in this work is to facilitate research that improves the factuality and faithfulness of abstractive summarization models.

pdf bib
Zero-shot Entity Linking with Less Data
G P Shrivatsa Bhargav | Dinesh Khandelwal | Saswati Dana | Dinesh Garg | Pavan Kapanipathi | Salim Roukos | Alexander Gray | L Venkata Subramaniam
Findings of the Association for Computational Linguistics: NAACL 2022

Entity Linking (EL) maps an entity mention in a natural language sentence to an entity in a knowledge base (KB). The Zero-shot Entity Linking (ZEL) extends the scope of EL to unseen entities at the test time without requiring new labeled data. BLINK (BERT-based) is one of the SOTA models for ZEL. Interestingly, we discovered that BLINK exhibits diminishing returns, i.e., it reaches 98% of its performance with just 1% of the training data and the remaining 99% of the data yields only a marginal increase of 2% in the performance. While this extra 2% gain makes a huge difference for downstream tasks, training BLINK on large amounts of data is very resource-intensive and impractical. In this paper, we propose a neuro-symbolic, multi-task learning approach to bridge this gap. Our approach boosts the BLINK’s performance with much less data by exploiting an auxiliary information about entity types. Specifically, we train our model on two tasks simultaneously - entity linking (primary task) and hierarchical entity type prediction (auxiliary task). The auxiliary task exploits the hierarchical structure of entity types. Our approach achieves superior performance on ZEL task with significantly less training data. On four different benchmark datasets, we show that our approach achieves significantly higher performance than SOTA models when they are trained with just 0.01%, 0.1%, or 1% of the original training data. Our code is available at https://github.com/IBM/NeSLET.

pdf bib
SYGMA: A System for Generalizable and Modular Question Answering Over Knowledge Bases
Sumit Neelam | Udit Sharma | Hima Karanam | Shajith Ikbal | Pavan Kapanipathi | Ibrahim Abdelaziz | Nandana Mihindukulasooriya | Young-Suk Lee | Santosh Srivastava | Cezar Pendus | Saswati Dana | Dinesh Garg | Achille Fokoue | G P Shrivatsa Bhargav | Dinesh Khandelwal | Srinivas Ravishankar | Sairam Gurajada | Maria Chang | Rosario Uceda-Sosa | Salim Roukos | Alexander Gray | Guilherme Lima | Ryan Riegel | Francois Luus | L V Subramaniam
Findings of the Association for Computational Linguistics: EMNLP 2022

Knowledge Base Question Answering (KBQA) involving complex reasoning is emerging as an important research direction. However, most KBQA systems struggle with generalizability, particularly on two dimensions: (a) across multiple knowledge bases, where existing KBQA approaches are typically tuned to a single knowledge base, and (b) across multiple reasoning types, where majority of datasets and systems have primarily focused on multi-hop reasoning. In this paper, we present SYGMA, a modular KBQA approach developed with goal of generalization across multiple knowledge bases and multiple reasoning types. To facilitate this, SYGMA is designed as two high level modules: 1) KB-agnostic question understanding module that remain common across KBs, and generates logic representation of the question with high level reasoning constructs that are extensible, and 2) KB-specific question mapping and answering module to address the KB-specific aspects of the answer extraction. We evaluated SYGMA on multiple datasets belonging to distinct knowledge bases (DBpedia and Wikidata) and distinct reasoning types (multi-hop and temporal). State-of-the-art or competitive performances achieved on those datasets demonstrate its generalization capability.

2021

pdf bib
Neuro-Symbolic Reinforcement Learning with First-Order Logic
Daiki Kimura | Masaki Ono | Subhajit Chaudhury | Ryosuke Kohita | Akifumi Wachi | Don Joven Agravante | Michiaki Tatsubori | Asim Munawar | Alexander Gray
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Deep reinforcement learning (RL) methods often require many trials before convergence, and no direct interpretability of trained policies is provided. In order to achieve fast convergence and interpretability for the policy in RL, we propose a novel RL method for text-based games with a recent neuro-symbolic framework called Logical Neural Network, which can learn symbolic and interpretable rules in their differentiable network. The method is first to extract first-order logical facts from text observation and external word meaning network (ConceptNet), then train a policy in the network with directly interpretable logical operators. Our experimental results show RL training with the proposed method converges significantly faster than other state-of-the-art neuro-symbolic methods in a TextWorld benchmark.

pdf bib
LNN-EL: A Neuro-Symbolic Approach to Short-text Entity Linking
Hang Jiang | Sairam Gurajada | Qiuhao Lu | Sumit Neelam | Lucian Popa | Prithviraj Sen | Yunyao Li | Alexander Gray
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Entity linking (EL) is the task of disambiguating mentions appearing in text by linking them to entities in a knowledge graph, a crucial task for text understanding, question answering or conversational systems. In the special case of short-text EL, which poses additional challenges due to limited context, prior approaches have reached good performance by employing heuristics-based methods or purely neural approaches. Here, we take a different, neuro-symbolic approach that combines the advantages of using interpretable rules based on first-order logic with the performance of neural learning. Even though constrained to use rules, we show that we reach competitive or better performance with SoTA black-box neural approaches. Furthermore, our framework has the benefits of extensibility and transferability. We show that we can easily blend existing rule templates given by a human expert, with multiple types of features (priors, BERT encodings, box embeddings, etc), and even with scores resulting from previous EL methods, thus improving on such methods. As an example of improvement, on the LC-QuAD-1.0 dataset, we show more than 3% increase in F1 score relative to previous SoTA. Finally, we show that the inductive bias offered by using logic results in a set of learned rules that transfers from one dataset to another, sometimes without finetuning, while still having high accuracy.

pdf bib
A Semantics-aware Transformer Model of Relation Linking for Knowledge Base Question Answering
Tahira Naseem | Srinivas Ravishankar | Nandana Mihindukulasooriya | Ibrahim Abdelaziz | Young-Suk Lee | Pavan Kapanipathi | Salim Roukos | Alfio Gliozzo | Alexander Gray
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)

Relation linking is a crucial component of Knowledge Base Question Answering systems. Existing systems use a wide variety of heuristics, or ensembles of multiple systems, heavily relying on the surface question text. However, the explicit semantic parse of the question is a rich source of relation information that is not taken advantage of. We propose a simple transformer-based neural model for relation linking that leverages the AMR semantic parse of a sentence. Our system significantly outperforms the state-of-the-art on 4 popular benchmark datasets. These are based on either DBpedia or Wikidata, demonstrating that our approach is effective across KGs.

pdf bib
LOA: Logical Optimal Actions for Text-based Interaction Games
Daiki Kimura | Subhajit Chaudhury | Masaki Ono | Michiaki Tatsubori | Don Joven Agravante | Asim Munawar | Akifumi Wachi | Ryosuke Kohita | Alexander Gray
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing: System Demonstrations

We present Logical Optimal Actions (LOA), an action decision architecture of reinforcement learning applications with a neuro-symbolic framework which is a combination of neural network and symbolic knowledge acquisition approach for natural language interaction games. The demonstration for LOA experiments consists of a web-based interactive platform for text-based games and visualization for acquired knowledge for improving interpretability for trained rules. This demonstration also provides a comparison module with other neuro-symbolic approaches as well as non-symbolic state-of-the-art agent models on the same text-based games. Our LOA also provides open-sourced implementation in Python for the reinforcement learning environment to facilitate an experiment for studying neuro-symbolic agents. Demo site: https://ibm.biz/acl21-loa, Code: https://github.com/ibm/loa

pdf bib
Leveraging Abstract Meaning Representation for Knowledge Base Question Answering
Pavan Kapanipathi | Ibrahim Abdelaziz | Srinivas Ravishankar | Salim Roukos | Alexander Gray | Ramón Fernandez Astudillo | Maria Chang | Cristina Cornelio | Saswati Dana | Achille Fokoue | Dinesh Garg | Alfio Gliozzo | Sairam Gurajada | Hima Karanam | Naweed Khan | Dinesh Khandelwal | Young-Suk Lee | Yunyao Li | Francois Luus | Ndivhuwo Makondo | Nandana Mihindukulasooriya | Tahira Naseem | Sumit Neelam | Lucian Popa | Revanth Gangi Reddy | Ryan Riegel | Gaetano Rossiello | Udit Sharma | G P Shrivatsa Bhargav | Mo Yu
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021