Automated Fact-Checking (AFC) is the automated verification of claim accuracy. AFC is crucial in discerning truth from misinformation, especially given the huge amounts of content are generated online daily. Current research focuses on predicting claim veracity through metadata analysis and language scrutiny, with an emphasis on justifying verdicts. This paper surveys recent methodologies, proposinga comprehensive taxonomy and presenting the evolution of research in that landscape. A comparative analysis of methodologies and futuredirections for improving fact-checking explainability are also discussed.
The proliferation of social media platforms has given rise to the amount of online debates and arguments. Consequently, the need for automatic summarization methods for such debates is imperative, however this area of summarization is rather understudied. The Key Point Analysis (KPA) task formulates argument summarization as representing the summary of a large collection of arguments in the form of concise sentences in bullet-style format, called key points. A sub-task of KPA, called Key Point Generation (KPG), focuses on generating these key points given the arguments. This paper introduces a novel extractive approach for key point generation, that outperforms previous state-of-the-art methods for the task. Our method utilizes an extractive clustering based approach that offers concise, high quality generated key points with higher coverage of reference summaries, and less redundant outputs. In addition, we show that the existing evaluation metrics for summarization such as ROUGE are incapable of differentiating between generated key points of different qualities. To this end, we propose a new evaluation metric for assessing the generated key points by their coverage. Our code can be accessed online.
With the ever-growing use of social media to express opinions on the national and international stage, unsupervised methods of stance detection are increasingly important to handle the task without costly annotation of data. The current unsupervised state-of-the-art models are designed for specific network types, either homophilic or heterophilic, and they fail to generalize to both. In this paper, we first analyze the generalization ability of recent baselines to these two very different network types. Then, we conduct extensive experiments with a baseline model based on text embeddings propagated with a graph neural network that generalizes well to heterophilic and homophilic networks. We show that it outperforms, on average, other state-of-the-art methods across the two network types. Additionally, we show that combining textual and network information outperforms using text only, and that the language model size has only a limited impact on the model performance.
Stance Detection is the task of identifying the position of an author of a text towards an issue or a target. Previous studies on Stance Detection indicate that the existing systems are non-robust to the variations and errors in input sentences. Our proposed methodology uses Contrastive Learning to learn sentence representations by bringing semantically similar sentences and sentences implying the same stance closer to each other in the embedding space. We compare our approach to a pretrained transformer model directly finetuned with the stance datasets. We use char-level and word-level adversarial perturbation attacks to measure the resilience of the models and we show that our approach achieves better performances and is more robust to the different adversarial perturbations introduced to the test data. The results indicate that our approach performs better on small-sized and class-imbalanced stance datasets.
Modern approaches in Natural Language Processing (NLP) require, ideally, large amounts of labelled data for model training. However, new language resources, for example, for Named Entity Recognition (NER), Co-reference Resolution (CR), Entity Linking (EL) and Relation Extraction (RE), naming a few of the most popular tasks in NLP, have always been challenging to create since manual text annotations can be very time-consuming to acquire. While there may be an acceptable amount of labelled data available for some of these tasks in one language, there may be a lack of datasets in another. WEXEA is a tool to exhaustively annotate entities in the English Wikipedia. Guidelines for editors of Wikipedia articles result, on the one hand, in only a few annotations through hyperlinks, but on the other hand, make it easier to exhaustively annotate the rest of these articles with entities than starting from scratch. We propose the following main improvements to WEXEA: Creating multi-lingual corpora, improved entity annotations using a proven NER system, annotating dates and times. A brief evaluation of the annotation quality of WEXEA is added.
Multi-label emotion classification is an important task in NLP and is essential to many applications. In this work, we propose a sequence-to-emotion (Seq2Emo) approach, which implicitly models emotion correlations in a bi-directional decoder. Experiments on SemEval’18 and GoEmotions datasets show that our approach outperforms state-of-the-art methods (without using external data). In particular, Seq2Emo outperforms the binary relevance (BR) and classifier chain (CC) approaches in a fair setting.
Building predictive models for information extraction from text, such as named entity recognition or the extraction of semantic relationships between named entities in text, requires a large corpus of annotated text. Wikipedia is often used as a corpus for these tasks where the annotation is a named entity linked by a hyperlink to its article. However, editors on Wikipedia are only expected to link these mentions in order to help the reader to understand the content, but are discouraged from adding links that do not add any benefit for understanding an article. Therefore, many mentions of popular entities (such as countries or popular events in history), or previously linked articles, as well as the article’s entity itself, are not linked. In this paper, we discuss WEXEA, a Wikipedia EXhaustive Entity Annotation system, to create a text corpus based on Wikipedia with exhaustive annotations of entity mentions, i.e. linking all mentions of entities to their corresponding articles. This results in a huge potential for additional annotations that can be used for downstream NLP tasks, such as Relation Extraction. We show that our annotations are useful for creating distantly supervised datasets for this task. Furthermore, we publish all code necessary to derive a corpus from a raw Wikipedia dump, so that it can be reproduced by everyone.
In this paper, we describe our mUlti-task learNIng for cOmmonsense reasoNing (UNION) system submitted for Task C of the SemEval2020 Task 4, which is to generate a reason explaining why a given false statement is non-sensical. However, we found in the early experiments that simple adaptations such as fine-tuning GPT2 often yield dull and non-informative generations (e.g. simple negations). In order to generate more meaningful explanations, we propose UNION, a unified end-to-end framework, to utilize several existing commonsense datasets so that it allows a model to learn more dynamics under the scope of commonsense reasoning. In order to perform model selection efficiently, accurately, and promptly, we also propose a couple of auxiliary automatic evaluation metrics so that we can extensively compare the models from different perspectives. Our submitted system not only results in a good performance in the proposed metrics but also outperforms its competitors with the highest achieved score of 2.10 for human evaluation while remaining a BLEU score of 15.7. Our code is made publicly available.
This paper describes the system submitted by ANA Team for the SemEval-2019 Task 3: EmoContext. We propose a novel Hierarchi- cal LSTMs for Contextual Emotion Detection (HRLCE) model. It classifies the emotion of an utterance given its conversational con- text. The results show that, in this task, our HRCLE outperforms the most recent state-of- the-art text classification framework: BERT. We combine the results generated by BERT and HRCLE to achieve an overall score of 0.7709 which ranked 5th on the final leader board of the competition among 165 Teams.
Self-attentional models are a new paradigm for sequence modelling tasks which differ from common sequence modelling methods, such as recurrence-based and convolution-based sequence learning, in the way that their architecture is only based on the attention mechanism. Self-attentional models have been used in the creation of the state-of-the-art models in many NLP task such as neural machine translation, but their usage has not been explored for the task of training end-to-end task-oriented dialogue generation systems yet. In this study, we apply these models on the DSTC2 dataset for training task-oriented chatbots. Our finding shows that self-attentional models can be exploited to create end-to-end task-oriented chatbots which not only achieve higher evaluation scores compared to recurrence-based models, but also do so more efficiently.
Despite myriad efforts in the literature designing neural dialogue generation systems in recent years, very few consider putting restrictions on the response itself. They learn from collections of past responses and generate one based on a given utterance without considering, speech act, desired style or emotion to be expressed. In this research, we address the problem of forcing the dialogue generation to express emotion. We present three models that either concatenate the desired emotion with the source input during the learning, or push the emotion in the decoder. The results, evaluated with an emotion tagger, are encouraging with all three models, but present better outcome and promise with our model that adds the emotion vector in the decoder.