Ananya B. Sai


2023

pdf bib
Bi-Phone: Modeling Inter Language Phonetic Influences in Text
Abhirut Gupta | Ananya B. Sai | Richard Sproat | Yuri Vasilevski | James Ren | Ambarish Jash | Sukhdeep Sodhi | Aravindan Raghuveer
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

A large number of people are forced to use the Web in a language they have low literacy in due to technology asymmetries. Written text in the second language (L2) from such users often contains a large number of errors that are influenced by their native language (L1).We propose a method to mine phoneme confusions (sounds in L2 that an L1 speaker is likely to conflate) for pairs of L1 and L2.These confusions are then plugged into a generative model (Bi-Phone) for synthetically producing corrupted L2 text. Through human evaluations, we show that Bi-Phone generates plausible corruptions that differ across L1s and also have widespread coverage on the Web.We also corrupt the popular language understanding benchmark SuperGLUE with our technique (FunGLUE for Phonetically Noised GLUE) and show that SoTA language understating models perform poorly. We also introduce a new phoneme prediction pre-training task which helps byte models to recover performance close to SuperGLUE. Finally, we also release the SuperGLUE benchmark to promote further research in phonetically robust language models. To the best of our knowledge, FunGLUE is the first benchmark to introduce L1-L2 interactions in text.

2021

pdf bib
Perturbation CheckLists for Evaluating NLG Evaluation Metrics
Ananya B. Sai | Tanay Dixit | Dev Yashpal Sheth | Sreyas Mohan | Mitesh M. Khapra
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Natural Language Generation (NLG) evaluation is a multifaceted task requiring assessment of multiple desirable criteria, e.g., fluency, coherency, coverage, relevance, adequacy, overall quality, etc. Across existing datasets for 6 NLG tasks, we observe that the human evaluation scores on these multiple criteria are often not correlated. For example, there is a very low correlation between human scores on fluency and data coverage for the task of structured data to text generation. This suggests that the current recipe of proposing new automatic evaluation metrics for NLG by showing that they correlate well with scores assigned by humans for a single criteria (overall quality) alone is inadequate. Indeed, our extensive study involving 25 automatic evaluation metrics across 6 different tasks and 18 different evaluation criteria shows that there is no single metric which correlates well with human scores on all desirable criteria, for most NLG tasks. Given this situation, we propose CheckLists for better design and evaluation of automatic metrics. We design templates which target a specific criteria (e.g., coverage) and perturb the output such that the quality gets affected only along this specific criteria (e.g., the coverage drops). We show that existing evaluation metrics are not robust against even such simple perturbations and disagree with scores assigned by humans to the perturbed output. The proposed templates thus allow for a fine-grained assessment of automatic evaluation metrics exposing their limitations and will facilitate better design, analysis and evaluation of such metrics. Our templates and code are available at https://iitmnlp.github.io/EvalEval/

pdf bib
A Tutorial on Evaluation Metrics used in Natural Language Generation
Mitesh M. Khapra | Ananya B. Sai
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Tutorials

The advent of Deep Learning and the availability of large scale datasets has accelerated research on Natural Language Generation with a focus on newer tasks and better models. With such rapid progress, it is vital to assess the extent of scientific progress made and identify the areas/components that need improvement. To accomplish this in an automatic and reliable manner, the NLP community has actively pursued the development of automatic evaluation metrics. Especially in the last few years, there has been an increasing focus on evaluation metrics, with several criticisms of existing metrics and proposals for several new metrics. This tutorial presents the evolution of automatic evaluation metrics to their current state along with the emerging trends in this field by specifically addressing the following questions: (i) What makes NLG evaluation challenging? (ii) Why do we need automatic evaluation metrics? (iii) What are the existing automatic evaluation metrics and how can they be organised in a coherent taxonomy? (iv) What are the criticisms and shortcomings of existing metrics? (v) What are the possible future directions of research?

2020

pdf bib
Improving Dialog Evaluation with a Multi-reference Adversarial Dataset and Large Scale Pretraining
Ananya B. Sai | Akash Kumar Mohankumar | Siddhartha Arora | Mitesh M. Khapra
Transactions of the Association for Computational Linguistics, Volume 8

There is an increasing focus on model-based dialog evaluation metrics such as ADEM, RUBER, and the more recent BERT-based metrics. These models aim to assign a high score to all relevant responses and a low score to all irrelevant responses. Ideally, such models should be trained using multiple relevant and irrelevant responses for any given context. However, no such data is publicly available, and hence existing models are usually trained using a single relevant response and multiple randomly selected responses from other contexts (random negatives). To allow for better training and robust evaluation of model-based metrics, we introduce the DailyDialog++ dataset, consisting of (i) five relevant responses for each context and (ii) five adversarially crafted irrelevant responses for each context. Using this dataset, we first show that even in the presence of multiple correct references, n-gram based metrics and embedding based metrics do not perform well at separating relevant responses from even random negatives. While model-based metrics perform better than n-gram and embedding based metrics on random negatives, their performance drops substantially when evaluated on adversarial examples. To check if large scale pretraining could help, we propose a new BERT-based evaluation metric called DEB, which is pretrained on 727M Reddit conversations and then finetuned on our dataset. DEB significantly outperforms existing models, showing better correlation with human judgments and better performance on random negatives (88.27% accuracy). However, its performance again drops substantially when evaluated on adversarial responses, thereby highlighting that even large-scale pretrained evaluation models are not robust to the adversarial examples in our dataset. The dataset1 and code2 are publicly available.