Anitha Kannan


2024

pdf bib
CONSCENDI: A Contrastive and Scenario-Guided Distillation Approach to Guardrail Models for Virtual Assistants
Albert Sun | Varun Nair | Elliot Schumacher | Anitha Kannan
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

A wave of new task-based virtual assistants has been fueled by increasingly powerful large language models (LLMs), such as GPT-4 (OpenAI, 2023). A major challenge in deploying LLM-based virtual conversational assistants in real world settings is ensuring they operate within what is admissible for the task. To overcome this challenge, the designers of these virtual assistants rely on an independent guardrail system that verifies the virtual assistant’s output aligns with the constraints required for the task. However, relying on commonly used, prompt-based guardrails can be difficult to engineer correctly and comprehensively. To address these challenges, we propose CONSCENDI. We use CONSCENDI to exhaustively generate training data with two key LLM-powered components: scenario-augmented generation and contrastive training examples. When generating conversational data, we generate a set of rule-breaking scenarios, which enumerate a diverse set of high-level ways a rule can be violated. This scenario-guided approach produces a diverse training set and provides chatbot designers greater control. To generate contrastive examples, we prompt the LLM to alter conversations with violations into acceptable conversations to enable fine-grained distinctions. We then use this data, generated by CONSCENDI, to train a smaller model. We find that CONSCENDI results in guardrail models that improve over baselines in multiple dialogue domains.

pdf bib
DERA: Enhancing Large Language Model Completions with Dialog-Enabled Resolving Agents
Varun Nair | Elliot Schumacher | Geoffrey Tso | Anitha Kannan
Proceedings of the 6th Clinical Natural Language Processing Workshop

Large language models (LLMs) have emerged as valuable tools for many natural language understanding tasks. In safety-critical applications such as healthcare, the utility of these models is governed by their ability to generate factually accurate and complete outputs. In this work, we present dialog-enabled resolving agents (DERA). DERA is a paradigm made possible by the increased conversational abilities of LLMs. It provides a simple, interpretable forum for models to communicate feedback and iteratively improve output. We frame our dialog as a discussion between two agent types – a Researcher, who processes information and identifies crucial problem components, and a Decider, who has the autonomy to integrate the Researcher’s information and makes judgments on the final output.We test DERA against three clinically-focused tasks, with GPT-4 serving as our LLM. DERA shows significant improvement over the base GPT-4 performance in both human expert preference evaluations and quantitative metrics for medical conversation summarization and care plan generation. In a new finding, we also show that GPT-4’s performance (70%) on an open-ended version of the MedQA question-answering (QA) dataset (Jin 2021; USMLE) is well above the passing level (60%), with DERA showing similar performance. We will release the open-ended MedQA dataset.

2023

pdf bib
Generating medically-accurate summaries of patient-provider dialogue: A multi-stage approach using large language models
Varun Nair | Elliot Schumacher | Anitha Kannan
Proceedings of the 5th Clinical Natural Language Processing Workshop

A medical provider’s summary of a patient visit serves several critical purposes, including clinical decision-making, facilitating hand-offs between providers, and as a reference for the patient. An effective summary is required to be coherent and accurately capture all the medically relevant information in the dialogue, despite the complexity of patient-generated language. Even minor inaccuracies in visit summaries (for example, summarizing “patient does not have a fever” when a fever is present) can be detrimental to the outcome of care for the patient. This paper tackles the problem of medical conversation summarization by discretizing the task into several smaller dialogue-understanding tasks that are sequentially built upon. First, we identify medical entities and their affirmations within the conversation to serve as building blocks. We study dynamically constructing few-shot prompts for tasks by conditioning on relevant patient information and use GPT-3 as the backbone for our experiments. We also develop GPT-derived summarization metrics to measure performance against reference summaries quantitatively. Both our human evaluation study and metrics for medical correctness show that summaries generated using this approach are clinically accurate and outperform the baseline approach of summarizing the dialog in a zero-shot, single-prompt setting.

pdf bib
Injecting knowledge into language generation: a case study in auto-charting after-visit care instructions from medical dialogue
Maksim Eremeev | Ilya Valmianski | Xavier Amatriain | Anitha Kannan
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Factual correctness is often the limiting factor in practical applications of natural language generation in high-stakes domains such as healthcare. An essential requirement for maintaining factuality is the ability to deal with rare tokens. This paper focuses on rare tokens that appear in both the source and the reference sequences, and which, when missed during generation, decrease the factual correctness of the output text. For high-stake domains that are also knowledge-rich, we show how to use knowledge to (a) identify which rare tokens that appear in both source and reference are important and (b) uplift their conditional probability. We introduce the “utilization rate” that encodes knowledge and serves as a regularizer by maximizing the marginal probability of selected tokens. We present a study in a knowledge-rich domain of healthcare, where we tackle the problem of generating after-visit care instructions based on patient-doctor dialogues. We verify that, in our dataset, specific medical concepts with high utilization rates are underestimated by conventionally trained sequence-to-sequence models. We observe that correcting this with our approach to knowledge injection reduces the uncertainty of the model as well as improves factuality and coherence without negatively impacting fluency.

2021

pdf bib
Medically Aware GPT-3 as a Data Generator for Medical Dialogue Summarization
Bharath Chintagunta | Namit Katariya | Xavier Amatriain | Anitha Kannan
Proceedings of the Second Workshop on Natural Language Processing for Medical Conversations

In medical dialogue summarization, summaries must be coherent and must capture all the medically relevant information in the dialogue. However, learning effective models for summarization require large amounts of labeled data which is especially hard to obtain. We present an algorithm to create synthetic training data with an explicit focus on capturing medically relevant information. We utilize GPT-3 as the backbone of our algorithm and scale 210 human labeled examples to yield results comparable to using 6400 human labeled examples (~30x) leveraging low-shot learning and an ensemble method. In detailed experiments, we show that this approach produces high quality training data that can further be combined with human labeled data to get summaries that are strongly preferable to those produced by models trained on human data alone both in terms of medical accuracy and coherency.

2020

pdf bib
Dr. Summarize: Global Summarization of Medical Dialogue by Exploiting Local Structures.
Anirudh Joshi | Namit Katariya | Xavier Amatriain | Anitha Kannan
Findings of the Association for Computational Linguistics: EMNLP 2020

Understanding a medical conversation between a patient and a physician poses unique natural language understanding challenge since it combines elements of standard open-ended conversation with very domain-specific elements that require expertise and medical knowledge. Summarization of medical conversations is a particularly important aspect of medical conversation understanding since it addresses a very real need in medical practice: capturing the most important aspects of a medical encounter so that they can be used for medical decision making and subsequent follow ups. In this paper we present a novel approach to medical conversation summarization that leverages the unique and independent local structures created when gathering a patient’s medical history. Our approach is a variation of the pointer generator network where we introduce a penalty on the generator distribution, and we explicitly model negations. The model also captures important properties of medical conversations such as medical knowledge coming from standardized medical ontologies better than when those concepts are introduced explicitly. Through evaluation by doctors, we show that our approach is preferred on twice the number of summaries to the baseline pointer generator model and captures most or all of the information in 80% of the conversations making it a realistic alternative to costly manual summarization by medical experts.

2014

pdf bib
Discovering Topical Aspects in Microblogs
Abhimanyu Das | Anitha Kannan
Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics: Technical Papers