Word Sense Disambiguation (WSD) is an important task in NLP, which serves the purpose of automatically disambiguating a polysemous word with its most likely sense in context. Recent studies have advanced the state of the art in this task, but most of the work has been carried out on contemporary English or other modern languages, leaving challenges posed by low-resource languages and diachronic change open. Although the problem with low-resource languages has recently been mitigated by using existing multilingual resources to propagate otherwise expensive annotations from English to other languages, such techniques have hitherto not been applied to historical languages such as Latin. In this work, we make the following two major contributions. First, we test such a strategy on a historical language and propose a new approach in this framework which makes use of existing bilingual corpora instead of native English datasets. Second, we fine-tune a Latin WSD model on the data produced and achieve state-of-the-art results on a standard benchmark for the task. Finally, we release the dataset generated with our approach, which is the largest dataset for Latin WSD to date. This work opens the door to further research, as our approach can be used for different historical and, generally, under-resourced languages.
This article proposes a linguistic linked open data model for diachronic analysis (LLODIA) that combines data derived from diachronic analysis of multilingual corpora with dictionary-based evidence. A humanities use case was devised as a proof of concept that includes examples in five languages (French, Hebrew, Latin, Lithuanian and Romanian) related to various meanings of the term “revolution” considered at different time intervals. The examples were compiled through diachronic word embedding and dictionary alignment.
We evaluate four count-based and predictive distributional semantic models of Ancient Greek against AGREE, a composite benchmark of human judgements, to assess their ability to retrieve semantic relatedness. On the basis of the observations deriving from the analysis of the results, we design a procedure for a larger-scale intrinsic evaluation of count-based and predictive language models, including syntactic embeddings. We also propose possible ways of exploiting the different layers of the whole AGREE benchmark (including both human- and machine-generated data) and different evaluation metrics.
The industrialization process associated with the so-called Industrial Revolution in 19th-century Great Britain was a time of profound changes, including in the English lexicon. An important yet understudied phenomenon is the semantic shift in the lexicon of mechanisation. In this paper we present the first large-scale analysis of terms related to mechanization over the course of the 19th-century in English. We draw on a corpus of historical British newspapers comprising 4.6 billion tokens and train historical word embedding models. We test existing semantic change detection techniques and analyse the results in light of previous historical linguistic scholarship.
We present a study on the integration of time-sensitive information in lexicon-based offensive language detection systems. Our focus is on Offenseval sub-task A, aimed at detecting offensive tweets. We apply a semantic change detection algorithm over a short time span of two years to detect words whose semantics has changed and we focus particularly on those words that acquired or lost an offensive meaning between 2019 and 2020. Using the output of this semantic change detection approach, we train an SVM classifier on the Offenseval 2019 training set. We build on the already competitive SINAI system submitted to Offenseval 2019 by adding new lexical features, including those that capture the change in usage of words and their association with emerging offensive usages. We discuss the challenges, opportunities and limitations of integrating semantic change detection in offensive language detection models. Our work draws attention to an often neglected aspect of offensive language, namely that the meanings of words are constantly evolving and that NLP systems that account for this change can achieve good performance even when not trained on the most recent training data.
Word meaning is notoriously difficult to capture, both synchronically and diachronically. In this paper, we describe the creation of the largest resource of graded contextualized, diachronic word meaning annotation in four different languages, based on 100,000 human semantic proximity judgments. We describe in detail the multi-round incremental annotation process, the choice for a clustering algorithm to group usages into senses, and possible – diachronic and synchronic – uses for this dataset.
Previous work has shown how to effectively use external resources such as dictionaries to improve English-language word embeddings, either by manipulating the training process or by applying post-hoc adjustments to the embedding space. We experiment with a multi-task learning approach for explicitly incorporating the structured elements of dictionary entries, such as user-assigned tags and usage examples, when learning embeddings for dictionary headwords. Our work generalizes several existing models for learning word embeddings from dictionaries. However, we find that the most effective representations overall are learned by simply training with a skip-gram objective over the concatenated text of all entries in the dictionary, giving no particular focus to the structure of the entries.
This paper proposes a new approach to animacy detection, the task of determining whether an entity is represented as animate in a text. In particular, this work is focused on atypical animacy and examines the scenario in which typically inanimate objects, specifically machines, are given animate attributes. To address it, we have created the first dataset for atypical animacy detection, based on nineteenth-century sentences in English, with machines represented as either animate or inanimate. Our method builds on recent innovations in language modeling, specifically BERT contextualized word embeddings, to better capture fine-grained contextual properties of words. We present a fully unsupervised pipeline, which can be easily adapted to different contexts, and report its performance on an established animacy dataset and our newly introduced resource. We show that our method provides a substantially more accurate characterization of atypical animacy, especially when applied to highly complex forms of language use.
The choice of the corpus on which word embeddings are trained can have a sizable effect on the learned representations, the types of analyses that can be performed with them, and their utility as features for machine learning models. To contribute to the existing sets of pre-trained word embeddings, we introduce and release the first set of word embeddings trained on the content of Urban Dictionary, a crowd-sourced dictionary for slang words and phrases. We show that although these embeddings are trained on fewer total tokens (by at least an order of magnitude compared to most popular pre-trained embeddings), they have high performance across a range of common word embedding evaluations, ranging from semantic similarity to word clustering tasks. Further, for some extrinsic tasks such as sentiment analysis and sarcasm detection where we expect to require some knowledge of colloquial language on social media data, initializing classifiers with the Urban Dictionary Embeddings resulted in improved performance compared to initializing with a range of other well-known, pre-trained embeddings that are order of magnitude larger in size.
Lexical Semantic Change detection, i.e., the task of identifying words that change meaning over time, is a very active research area, with applications in NLP, lexicography, and linguistics. Evaluation is currently the most pressing problem in Lexical Semantic Change detection, as no gold standards are available to the community, which hinders progress. We present the results of the first shared task that addresses this gap by providing researchers with an evaluation framework and manually annotated, high-quality datasets for English, German, Latin, and Swedish. 33 teams submitted 186 systems, which were evaluated on two subtasks.
Semantic change detection (i.e., identifying words whose meaning has changed over time) started emerging as a growing area of research over the past decade, with important downstream applications in natural language processing, historical linguistics and computational social science. However, several obstacles make progress in the domain slow and difficult. These pertain primarily to the lack of well-established gold standard datasets, resources to study the problem at a fine-grained temporal resolution, and quantitative evaluation approaches. In this work, we aim to mitigate these issues by (a) releasing a new labelled dataset of more than 47K word vectors trained on the UK Web Archive over a short time-frame (2000-2013); (b) proposing a variant of Procrustes alignment to detect words that have undergone semantic shift; and (c) introducing a rank-based approach for evaluation purposes. Through extensive numerical experiments and validation, we illustrate the effectiveness of our approach against competitive baselines. Finally, we also make our resources publicly available to further enable research in the domain.
Word meaning changes over time, depending on linguistic and extra-linguistic factors. Associating a word’s correct meaning in its historical context is a central challenge in diachronic research, and is relevant to a range of NLP tasks, including information retrieval and semantic search in historical texts. Bayesian models for semantic change have emerged as a powerful tool to address this challenge, providing explicit and interpretable representations of semantic change phenomena. However, while corpora typically come with rich metadata, existing models are limited by their inability to exploit contextual information (such as text genre) beyond the document time-stamp. This is particularly critical in the case of ancient languages, where lack of data and long diachronic span make it harder to draw a clear distinction between polysemy (the fact that a word has several senses) and semantic change (the process of acquiring, losing, or changing senses), and current systems perform poorly on these languages. We develop GASC, a dynamic semantic change model that leverages categorical metadata about the texts’ genre to boost inference and uncover the evolution of meanings in Ancient Greek corpora. In a new evaluation framework, our model achieves improved predictive performance compared to the state of the art.
Word embeddings are increasingly used for the automatic detection of semantic change; yet, a robust evaluation and systematic comparison of the choices involved has been lacking. We propose a new evaluation framework for semantic change detection and find that (i) using the whole time series is preferable over only comparing between the first and last time points; (ii) independently trained and aligned embeddings perform better than continuously trained embeddings for long time periods; and (iii) that the reference point for comparison matters. We also present an analysis of the changes detected on a large Twitter dataset spanning 5.5 years.
In this paper, we reported experiments of unsupervised automatic acquisition of Italian and English verb subcategorization frames (SCFs) from general and domain corpora. The proposed technique operates on syntactically shallow-parsed corpora on the basis of a limited number of search heuristics not relying on any previous lexico-syntactic knowledge about SCFs. Although preliminary, reported results are in line with state-of-the-art lexical acquisition systems. The issue of whether verbs sharing similar SCFs distributions happen to share similar semantic properties as well was also explored by clustering verbs that share frames with the same distribution using the Minimum Description Length Principle (MDL). First experiments in this direction were carried out on Italian verbs with encouraging results.