While the popularity of large, versatile language models like ChatGPT continues to rise, the landscape shifts when considering open-source models tailored to specific domains. Moreover, many areas, such as clinical documents, suffer from a scarcity of training data, often amounting to only a few hundred instances. Additionally, in certain settings, such as hospitals, cloud-based solutions pose privacy concerns, necessitating the deployment of language models on traditional hardware, such as single GPUs or powerful CPUs. To address these complexities, we conduct extensive experiments on both clinical entity detection and relation extraction in clinical documents using 1B parameter models. Our study delves into traditional fine-tuning, continuous pre-training in the medical domain, and instruction-tuning methods, providing valuable insights into their effectiveness in a multilingual setting. Our results underscore the importance of domain-specific models and pre-training for clinical natural language processing tasks. Furthermore, data augmentation using cross-lingual information improves performance in most cases, highlighting the potential for multilingual enhancements.
Research on language technology for the development of medical applications is currently a hot topic in Natural Language Understanding and Generation. Thus, a number of large language models (LLMs) have recently been adapted to the medical domain, so that they can be used as a tool for mediating in human-AI interaction. While these LLMs display competitive performance on automated medical texts benchmarks, they have been pre-trained and evaluated with a focus on a single language (English mostly). This is particularly true of text-to-text models, which typically require large amounts of domain-specific pre-training data, often not easily accessible for many languages. In this paper, we address these shortcomings by compiling, to the best of our knowledge, the largest multilingual corpus for the medical domain in four languages, namely English, French, Italian and Spanish. This new corpus has been used to train Medical mT5, the first open-source text-to-text multilingual model for the medical domain. Additionally, we present two new evaluation benchmarks for all four languages with the aim of facilitating multilingual research in this domain. A comprehensive evaluation shows that Medical mT5 outperforms both encoders and similarly sized text-to-text models for the Spanish, French, and Italian benchmarks, while being competitive with current state-of-the-art LLMs in English.
Conversations exhibit significant variation when different styles are employed by participants, often leading to subpar performance when a dialogue model is exclusively trained on single-style datasets. We present a cost-effective methodology for generating multi-style conversations, which can be used in the development of conversational agents. This methodology only assumes the availability of a conversational domain, such as a knowledge base, and leverages the generative capabilities of large language models. In a pilot study focused on the generation aspect of task-oriented dialogues, we extended the well-known MultiWOZ dataset to encompass multi-style variations. Our findings highlight two key experimental outcomes: (i) these novel resources pose challenges for current single-style models, and (ii) multi-style resources enhance the dialogue model’s resilience to stylistic variations.
Recent advancements in instruction-based language models have demonstrated exceptional performance across various natural language processing tasks. We present a comprehensive analysis of the performance of two open-source language models, BERT and Llama-2, in the context of dynamic task-oriented dialogues. Focusing on the Restaurant domain and utilizing the MultiWOZ 2.4 dataset, our investigation centers on the models’ ability to generate predictions for masked slot values within text. The dynamic aspect is introduced through simulated domain changes, mirroring real-world scenarios where new slot values are incrementally added to a domain over time.This study contributes to the understanding of instruction-based models’ effectiveness in dynamic natural language understanding tasks when compared to traditional language models and emphasizes the significance of open-source, reproducible models in advancing research within the academic community.
We assume that providing explanations is a process to elicit implicit knowledge in human communication, and propose a general methodology to generate commonsense explanations from pairs of semantically related sentences. We take advantage of both prompting applied to large, encoder-decoder pre-trained language models, and few-shot learning techniques, such as pattern-exploiting training. Experiments run on the e-SNLI dataset show that the proposed method achieves state-of-the-art results on the explanation generation task, with a substantial reduction of labelled data. The obtained results open new perspective on a number of tasks involving the elicitation of implicit knowledge.
Recent task-oriented dialogue systems are trained on annotated dialogues, which, in turn, reflect certain domain information (e.g., restaurants or hotels in a given region). However, when such domain knowledge changes (e.g., new restaurants open), the initial dialogue model may become obsolete, decreasing the overall performance of the system. Through a number of experiments, we show, for instance, that adding 50% of new slot-values reduces of about 55% the dialogue state-tracker performance. In light of such evidence, we suggest that automatic adaptation of training dialogues is a valuable option for re-training obsolete models. We experimented with a dialogue adaptation approach based on fine-tuning a generative language model on domain changes, showing that a significant reduction of performance decrease can be obtained.
This paper aims at providing a comprehensive overview of recent developments in dialogue state tracking (DST) for task-oriented conversational systems. We introduce the task, the main datasets that have been exploited as well as their evaluation metrics, and we analyze several proposed approaches. We distinguish between static ontology DST models, which predict a fixed set of dialogue states, and dynamic ontology models, which can predict dialogue states even when the ontology changes. We also discuss the model’s ability to track either single or multiple domains and to scale to new domains, both in terms of knowledge transfer and zero-shot learning. We cover a period from 2013 to 2020, showing a significant increase of multiple domain methods, most of them utilizing pre-trained language models.
Recent task-oriented dialogue systems learn a model from annotated dialogues, and such dialogues are in turn collected and annotated so that they are consistent with certain domain knowledge. However, in real scenarios, domain knowledge is subject to frequent changes, and initial training dialogues may soon become obsolete, resulting in a significant decrease in the model performance. In this paper, we investigate the relationship between training dialogues and domain knowledge, and propose Dialogue Domain Adaptation, a methodology aiming at adapting initial training dialogues to changes intervened in the domain knowledge. We focus on slot-value changes (e.g., when new slot values are available to describe domain entities) and define an experimental setting for dialogue domain adaptation. First, we show that current state-of-the-art models for dialogue state tracking are still poorly robust to slot-value changes of the domain knowledge. Then, we compare different domain adaptation strategies, showing that simple techniques are effective to reduce the gap between training dialogues and domain knowledge.
Although several works have addressed the role of data selection to improve transfer learning for various NLP tasks, there is no consensus about its real benefits and, more generally, there is a lack of shared practices on how it can be best applied. We propose a systematic approach aimed at evaluating data selection in scenarios of increasing complexity. Specifically, we compare the case in which source and target tasks are the same while source and target domains are different, against the more challenging scenario where both tasks and domains are different. We run a number of experiments on semantic sequence tagging tasks, which are relatively less investigated in data selection, and conclude that data selection has more benefit on the scenario when the tasks are the same, while in case of different (although related) tasks from distant domains, a combination of data selection and multi-task learning is ineffective for most cases.
In recent years, fostered by deep learning technologies and by the high demand for conversational AI, various approaches have been proposed that address the capacity to elicit and understand user’s needs in task-oriented dialogue systems. We focus on two core tasks, slot filling (SF) and intent classification (IC), and survey how neural based models have rapidly evolved to address natural language understanding in dialogue systems. We introduce three neural architectures: independent models, which model SF and IC separately, joint models, which exploit the mutual benefit of the two tasks simultaneously, and transfer learning models, that scale the model to new domains. We discuss the current state of the research in SF and IC, and highlight challenges that still require attention.
We present a comparison between deep learning and traditional machine learning methods for various NLP tasks in Italian. We carried on experiments using available datasets (e.g., from the Evalita shared tasks) on two sequence tagging tasks (i.e., named entities recognition and nominal entities recognition) and four classification tasks (i.e., lexical relations among words, semantic relations among sentences, sentiment analysis and text classification). We show that deep learning approaches outperform traditional machine learning algorithms in sequence tagging, while for classification tasks that heavily rely on semantics approaches based on feature engineering are still competitive. We think that a similar analysis could be carried out for other languages to provide an assessment of machine learning / deep learning models across different languages.
Multilingualism is a cultural cornerstone of Europe and firmly anchored in the European treaties including full language equality. However, language barriers impacting business, cross-lingual and cross-cultural communication are still omnipresent. Language Technologies (LTs) are a powerful means to break down these barriers. While the last decade has seen various initiatives that created a multitude of approaches and technologies tailored to Europe’s specific needs, there is still an immense level of fragmentation. At the same time, AI has become an increasingly important concept in the European Information and Communication Technology area. For a few years now, AI – including many opportunities, synergies but also misconceptions – has been overshadowing every other topic. We present an overview of the European LT landscape, describing funding programmes, activities, actions and challenges in the different countries with regard to LT, including the current state of play in industry and the LT market. We present a brief overview of the main LT-related activities on the EU level in the last ten years and develop strategic guidance with regard to four key dimensions.
Slot filling is a core operation for utterance understanding in task-oriented dialogue systems. Slots are typically domain-specific, and adding new domains to a dialogue system involves data and time-intensive processes. A popular technique to address the problem is transfer learning, where it is assumed the availability of a large slot filling dataset for the source domain, to be used to help slot filling on the target domain, with fewer data. In this work, instead, we propose to leverage source tasks based on semantically related non-conversational resources (e.g., semantic sequence tagging datasets), as they are both cheaper to obtain and reusable to several slot filling domains. We show that using auxiliary non-conversational tasks in a multi-task learning setup consistently improves low resource slot filling performance.
We present a novel abstraction framework called FASTDial for designing task oriented dialogue agents, built on top of the OpenDial toolkit. This framework is meant to facilitate prototyping and development of dialogue systems from scratch also by non tech savvy especially when limited training data is available. To this end, we use a generic and simple frame-slots data-structure with pre-defined dialogue policies that allows for fast design and implementation at the price of some flexibility reduction. Moreover, it allows for minimizing programming effort and domain expert training time, by hiding away many implementation details. We provide a system demonstration screencast video in the following link: https://vimeo.com/329840716
We present a domain portable zero-shot learning approach for entity recognition in task-oriented conversational agents, which does not assume any annotated sentences at training time. Rather, we derive a neural model of the entity names based only on available gazetteers, and then apply the model to recognize new entities in the context of user utterances. In order to evaluate our working hypothesis we focus on nominal entities that are largely used in e-commerce to name products. Through a set of experiments in two languages (English and Italian) and three different domains (furniture, food, clothing), we show that the neural gazetteer-based approach outperforms several competitive baselines, with minimal requirements of linguistic features.
In task-oriented conversational agents, more attention has been usually devoted to assessing task effectiveness, rather than to how the task is achieved. However, conversational agents are moving towards more complex and human-like interaction capabilities (e.g. the ability to use a formal/informal register, to show an empathetic behavior), for which standard evaluation methodologies may not suffice. In this paper, we provide a novel methodology to assess - in a completely controlled way - the impact on the quality of experience of agent’s interaction strategies. The methodology is based on a within subject design, where two slightly different transcripts of the same interaction with a conversational agent are presented to the user. Through a series of pilot experiments we prove that this methodology allows fast and cheap experimentation/evaluation, focusing on aspects that are overlooked by current methods.
Slot filling is a crucial task in the Natural Language Understanding (NLU) component of a dialogue system. Most approaches for this task rely solely on the domain-specific datasets for training. We propose a joint model of slot filling and Named Entity Recognition (NER) in a multi-task learning (MTL) setup. Our experiments on three slot filling datasets show that using NER as an auxiliary task improves slot filling performance and achieve competitive performance compared with state-of-the-art. In particular, NER is effective when supervised at the lower layer of the model. For low-resource scenarios, we found that MTL is effective for one dataset.
We present a methodology for building lexical sets for argument slots of Italian verbs. We start from an inventory of semantically typed Italian verb frames and through a mapping to WordNet we automatically annotate the sets of fillers for the argument positions in a corpus of sentences. We evaluate both a baseline algorithm and a syntax driven algorithm and show that the latter performs significantly better in terms of precision.
This paper presents TextPro-AL (Active Learning for Text Processing), a platform where human annotators can efficiently work to produce high quality training data for new domains and new languages exploiting Active Learning methodologies. TextPro-AL is a web-based application integrating four components: a machine learning based NLP pipeline, an annotation editor for task definition and text annotations, an incremental re-training procedure based on active learning selection from a large pool of unannotated data, and a graphical visualization of the learning status of the system.
We describe an experiment for the acquisition of opposition relations among Italian verb senses, based on a crowdsourcing methodology. The goal of the experiment is to discuss whether the types of opposition we distinguish (i.e. complementarity, antonymy, converseness and reversiveness) are actually perceived by the crowd. In particular, we collect data for Italian by using the crowdsourcing platform CrowdFlower. We ask annotators to judge the type of opposition existing among pairs of sentences -previously judged as opposite- that differ only for a verb: the verb in the first sentence is opposite of the verb in second sentence. Data corroborate the hypothesis that some opposition relations exclude each other, while others interact, being recognized as compatible by the contributors.
Beside formal approaches to semantic inference that rely on logical representation of meaning, the notion of Textual Entailment (TE) has been proposed as an applied framework to capture major semantic inference needs across applications in Computational Linguistics. Although several approaches have been tried and evaluation campaigns have shown improvements in TE, a renewed interest is rising in the research community towards a deeper and better understanding of the core phenomena involved in textual inference. Pursuing this direction, we are convinced that crucial progress will derive from a focus on decomposing the complexity of the TE task into basic phenomena and on their combination. In this paper, we carry out a deep analysis on TE data sets, investigating the relations among two relevant aspects of semantic inferences: the logical dimension, i.e. the capacity of the inference to prove the conclusion from its premises, and the linguistic dimension, i.e. the linguistic devices used to accomplish the goal of the inference. We propose a decomposition approach over TE pairs, where single linguistic phenomena are isolated in what we have called atomic inference pairs, and we show that at this granularity level the actual correlation between the linguistic and the logical dimensions of semantic inferences emerges and can be empirically observed.
This article provides an overview of the dissemination work carried out in META-NET from 2010 until early 2014; we describe its impact on the regional, national and international level, mainly with regard to politics and the situation of funding for LT topics. This paper documents the initiatives work throughout Europe in order to boost progress and innovation in our field.
The goal of this paper is to introduce T-PAS, a resource of typed predicate argument structures for Italian, acquired from corpora by manual clustering of distributional information about Italian verbs, to be used for linguistic analysis and semantic processing tasks. T-PAS is the first resource for Italian in which semantic selection properties and sense-in-context distinctions of verbs are characterized fully on empirical ground. In the paper, we first describe the process of pattern acquisition and corpus annotation (section 2) and its ongoing evaluation (section 3). We then demonstrate the benefits of pattern tagging for NLP purposes (section 4), and discuss current effort to improve the annotation of the corpus (section 5). We conclude by reporting on ongoing experiments using semiautomatic techniques for extending coverage (section 6).
This paper presents META-SHARE (www.meta-share.eu), an open language resource infrastructure, and its usage since its Europe-wide deployment in early 2013. META-SHARE is a network of repositories that store language resources (data, tools and processing services) documented with high-quality metadata, aggregated in central inventories allowing for uniform search and access. META-SHARE was developed by META-NET (www.meta-net.eu) and aims to serve as an important component of a language technology marketplace for researchers, developers, professionals and industrial players, catering for the full development cycle of language technology, from research through to innovative products and services. The observed usage in its initial steps, the steadily increasing number of network nodes, resources, users, queries, views and downloads are all encouraging and considered as supportive of the choices made so far. In tandem, take-up activities like direct linking and processing of datasets by language processing services as well as metadata transformation to RDF are expected to open new avenues for data and resources linking and boost the organic growth of the infrastructure while facilitating language technology deployment by much wider research communities and industrial sectors.
Uncertainty language permeates biomedical research and is fundamental for the computer interpretation of unstructured text. And yet, a coherent, cognitive-based theory to interpret Uncertainty language and guide Natural Language Processing is, to our knowledge, non-existing. The aim of our project was therefore to detect and annotate Uncertainty markers ― which play a significant role in building knowledge or beliefs in readers' minds ― in a biomedical research corpus. Our corpus includes 80 manually annotated articles from the British Medical Journal randomly sampled from a 168-year period. Uncertainty markers have been classified according to a theoretical framework based on a combined linguistic and cognitive theory. The corpus was manually annotated according to such principles. We performed preliminary experiments to assess the manually annotated corpus and establish a baseline for the automatic detection of Uncertainty markers. The results of the experiments show that most of the Uncertainty markers can be recognized with good accuracy.
This paper describes the KnowledgeStore, a large-scale infrastructure for the combined storage and interlinking of multimedia resources and ontological knowledge. Information in the KnowledgeStore is organized around entities, such as persons, organizations and locations. The system allows (i) to import background knowledge about entities, in form of annotated RDF triples; (ii) to associate resources to entities by automatically recognizing, coreferring and linking mentions of named entities; and (iii) to derive new entities based on knowledge extracted from mentions. The KnowledgeStore builds on state of art technologies for language processing, including document tagging, named entity extraction and cross-document coreference. Its design provides for a tight integration of linguistic and semantic features, and eases the further processing of information by explicitly representing the contexts where knowledge and mentions are valid or relevant. We describe the system and report about the creation of a large-scale KnowledgeStore instance for storing and integrating multimedia contents and background knowledge relevant to the Italian Trentino region.
The paper offers an overview of the key issues raised during the seven years activity of the Multilingual Question Answering Track at the Cross Language Evaluation Forum (CLEF). The general aim of the Multilingual Question Answering Track has been to test both monolingual and cross-language Question Answering (QA) systems that process queries and documents in several European languages, also drawing attention to a number of challenging issues for research in multilingual QA. The paper gives a brief description of how the task has evolved over the years and of the way in which the data sets have been created, presenting also a brief summary of the different types of questions developed. The document collections adopted in the competitions are sketched as well, and some data about the participation are provided. Moreover, the main evaluation measures used to evaluate system performances are explained and an overall analysis of the results achieved is presented.
This paper proposes a methodology for the creation of specialized data sets for Textual Entailment, made of monothematic Text-Hypothesis pairs (i.e. pairs in which only one linguistic phenomenon relevant to the entailment relation is highlighted and isolated). The expected benefits derive from the intuition that investigating the linguistic phenomena separately, i.e. decomposing the complexity of the TE problem, would yield an improvement in the development of specific strategies to cope with them. The annotation procedure assumes that humans have knowledge about the linguistic phenomena relevant to inference, and a classification of such phenomena both into fine grained and macro categories is suggested. We experimented with the proposed methodology over a sample of pairs taken from the RTE-5 data set, and investigated critical issues arising when entailment, contradiction or unknown pairs are considered. The result is a new resource, which can be profitably used both to advance the comprehension of the linguistic phenomena relevant to entailment judgments and to make a first step towards the creation of large-scale specialized data sets.
This paper presents the QALL-ME benchmark, a multilingual resource of annotated spoken requests in the tourism domain, freely available for research purposes. The languages currently involved in the project are Italian, English, Spanish and German. It introduces a semantic annotation scheme for spoken information access requests, specifically derived from Question Answering (QA) research. In addition to pragmatic and semantic annotations, we propose three QA-based annotation levels: the Expected Answer Type, the Expected Answer Quantifier and the Question Topical Target of a request, to fully capture the content of a request and extract the sought-after information. The QALL-ME benchmark is developed under the EU-FP6 QALL-ME project which aims at the realization of a shared and distributed infrastructure for Question Answering (QA) systems on mobile devices (e.g. mobile phones). Questions are formulated by the users in free natural language input, and the system returns the actual sequence of words which constitutes the answer from a collection of information sources (e.g. documents, databases). Within this framework, the benchmark has the twofold purpose of training machine learning based applications for QA, and testing their actual performance with a rapid turnaround in controlled laboratory setting.
EVALITA 2007, the first edition of the initiative devoted to the evaluation of Natural Language Processing tools for Italian, provided a shared framework where participants systems had the possibility to be evaluated on five different tasks, namely Part of Speech Tagging (organised by the University of Bologna), Parsing (organised by the University of Torino), Word Sense Disambiguation (organised by CNR-ILC, Pisa), Temporal Expression Recognition and Normalization (organised by CELCT, Trento), and Named Entity Recognition (organised by FBK, Trento). We believe that the diffusion of shared tasks and shared evaluation practices is a crucial step towards the development of resources and tools for Natural Language Processing. Experiences of this kind, in fact, are a valuable contribution to the validation of existing models and data, allowing for consistent comparisons among approaches and among representation schemes. The good response obtained by EVALITA, both in the number of participants and in the quality of results, showed that pursuing such goals is feasible not only for English, but also for other languages.
In this paper we present work in progress for the creation of the Italian Content Annotation Bank (I-CAB), a corpus of Italian news annotated with semantic information at different levels. The first level is represented by temporal expressions, the second level is represented by different types of entities (i.e. person, organizations, locations and geo-political entities), and the third level is represented by relations between entities (e.g. the affiliation relation connecting a person to an organization). So far I-CAB has been manually annotated with temporal expressions, person entities and organization entities. As we intend I-CAB to become a benchmark for various automatic Information Extraction tasks, we followed a policy of reusing already available markup languages. In particular, we adopted the annotation schemes developed for the ACE Entity Detection and Time Expressions Recognition and Normalization tasks. As the ACE guidelines have originally been developed for English, part of the effort consisted in adapting them to the specific morpho-syntactic features of Italian. Finally, we have extended them to include a wider range of entities, such as conjunctions.
Entailment rules are rules where the left hand side (LHS) specifies some knowledge which entails the knowledge expressed n the RHS of the rule, with some degree of confidence. Simple entailment rules can be combined in complex entailment chains, which n turn are at the basis of entailment-based reasoning, which has been recently proposed as a pervasive and application independent approach to Natural Language Understanding. We present the first elease of a large-scale repository of entailment rules at the lexical level, which have been derived from a number of available resources, including WordNet and a word similarity database. Experiments on the PASCAL-RTE dataset show that this resource plays a crucial role in recognizing textual entailment.
This paper presents an overview of the Multilingual Question Answering evaluation campaigns which have been organized at CLEF (Cross Language Evaluation Forum) since 2003. Over the years, the competition has registered a steady increment in the number of participants and languages involved. In fact, from the original eight groups which participated in 2003 QA track, the number of competitors in 2005 rose to twenty-four. Also, the performances of the systems have steadily improved, and the average of the best performances in the 2005 saw an increase of 10% with respect to the previous year.