Bianca Vieru


2022

pdf bib
Stratégies d’adaptation pour la reconnaissance d’entités médicales en français (Adaptation strategies for biomedical named entity recognition in French)
Tiphaine Le Clercq de Lannoy | Romaric Besançon | Olivier Ferret | Julien Tourille | Frédérique Brin-Henry | Bianca Vieru
Actes de la 29e Conférence sur le Traitement Automatique des Langues Naturelles. Volume 1 : conférence principale

Dans un contexte où peu de corpus annotés pour l’extraction d’entités médicales sont disponibles, nous étudions dans cet article une approche hybride combinant utilisation de connaissances spécialisées et adaptation de modèles de langues en mettant l’accent sur l’effet du pré-entraînement d’un modèle de langue généraliste (CamemBERT) sur différents corpus. Les résultats sont obtenus sur le corpus QUAERO. Nous montrons que pré-entraîner un modèle avec un corpus spécialisé, même de taille réduite, permet d’observer une amélioration des résultats. La combinaison de plusieurs approches permet de gagner un à sept points de F1-mesure selon le corpus de test et la méthode.

2011

pdf bib
Speech recognition for machine translation in Quaero
Lori Lamel | Sandrine Courcinous | Julien Despres | Jean-Luc Gauvain | Yvan Josse | Kevin Kilgour | Florian Kraft | Viet-Bac Le | Hermann Ney | Markus Nußbaum-Thom | Ilya Oparin | Tim Schlippe | Ralf Schlüter | Tanja Schultz | Thiago Fraga da Silva | Sebastian Stüker | Martin Sundermeyer | Bianca Vieru | Ngoc Thang Vu | Alexander Waibel | Cécile Woehrling
Proceedings of the 8th International Workshop on Spoken Language Translation: Evaluation Campaign

This paper describes the speech-to-text systems used to provide automatic transcriptions used in the Quaero 2010 evaluation of Machine Translation from speech. Quaero (www.quaero.org) is a large research and industrial innovation program focusing on technologies for automatic analysis and classification of multimedia and multilingual documents. The ASR transcript is the result of a Rover combination of systems from three teams ( KIT, RWTH, LIMSI+VR) for the French and German languages. The casesensitive word error rates (WER) of the combined systems were respectively 20.8% and 18.1% on the 2010 evaluation data, relative WER reductions of 14.6% and 17.4% respectively over the best component system.