Bing Xiang


2024

pdf bib
Token Alignment via Character Matching for Subword Completion
Ben Athiwaratkun | Shiqi Wang | Mingyue Shang | Yuchen Tian | Zijian Wang | Sujan Kumar Gonugondla | Sanjay Krishna Gouda | Robert Kwiatkowski | Ramesh Nallapati | Parminder Bhatia | Bing Xiang
Findings of the Association for Computational Linguistics ACL 2024

Generative models, widely utilized in various applications, can often struggle with prompts corresponding to partial tokens. This struggle stems from tokenization, where partial tokens fall out of distribution during inference, leading to incorrect or nonsensical outputs. This paper examines a technique to alleviate the tokenization artifact on text completion in generative models, maintaining performance even in regular non-subword cases. The method, termed token alignment, involves backtracking to the last complete tokens and ensuring the model’s generation aligns with the prompt. This approach showcases marked improvement across many partial token scenarios, including nuanced cases like space-prefix and partial indentation, with only a minor time increase. The technique and analysis detailed in this paper contribute to the continuous advancement of generative models in handling partial inputs, bearing relevance for applications like code completion and text.

pdf bib
CoCoMIC: Code Completion by Jointly Modeling In-file and Cross-file Context
Yangruibo Ding | Zijian Wang | Wasi Ahmad | Murali Krishna Ramanathan | Ramesh Nallapati | Parminder Bhatia | Dan Roth | Bing Xiang
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

While pre-trained language models (LM) for code have achieved great success in code completion, they generate code conditioned only on the contents within the file, i.e., in-file context, but ignore the rich semantics in other files within the same project, i.e., project-level cross-file context, a critical source of information that is especially useful in modern modular software development. Such overlooking constrains code LMs’ capacity in code completion, leading to unexpected behaviors such as generating hallucinated class member functions or function calls with unexpected arguments. In this work, we propose CoCoMIC, a novel framework that jointly learns the in-file and cross-file context on top of code LMs. To empower CoCoMIC, we develop CCFinder, a static-analysis-based tool that locates and retrieves the most relevant project-level cross-file context for code completion. CoCoMIC successfully improves the existing code LM with a 33.94% relative increase in exact match and 28.69% in identifier matching for code completion when the cross-file context is provided. Finally, we perform a series of ablation studies and share valuable insights for future research on integrating cross-file context into code LMs.

pdf bib
Lightweight reranking for language model generations
Siddhartha Jain | Xiaofei Ma | Anoop Deoras | Bing Xiang
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Large Language Models (LLMs) can exhibit considerable variation in the quality of their sampled outputs. Reranking and selecting the best generation from the sampled set is a popular way of obtaining strong gains in generation quality. In this paper, we present a novel approach for reranking LLM generations. Unlike other techniques that might involve additional inferences or training a specialized reranker, our approach relies on easy to compute pairwise statistics between the generations that have minimal compute overhead. We show that our approach can be formalized as an extension of self-consistency and analyze its performance in that framework, theoretically as well as via simulations. We show strong improvements for selecting the best k generations for code generation tasks as well as robust improvements for the best generation for the tasks of autoformalization, summarization, and translation. While our approach only assumes black-box access to LLMs, we show that additional access to token probabilities can improve performance even further.

2023

pdf bib
ContraCLM: Contrastive Learning For Causal Language Model
Nihal Jain | Dejiao Zhang | Wasi Uddin Ahmad | Zijian Wang | Feng Nan | Xiaopeng Li | Ming Tan | Ramesh Nallapati | Baishakhi Ray | Parminder Bhatia | Xiaofei Ma | Bing Xiang
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Despite exciting progress in causal language models, the expressiveness of their representations is largely limited due to poor discrimination ability. To remedy this issue, we present CONTRACLM, a novel contrastive learning framework at both the token-level and the sequence-level. We assess CONTRACLM on a variety of downstream tasks. We show that CONTRACLM enhances the discrimination of representations and bridges the gap with encoder-only models, which makes causal language models better suited for tasks beyond language generation. Specifically, we attain 44% relative improvement on the Semantic Textual Similarity tasks and 34% on Code-to-Code Search tasks. Furthermore, by improving the expressiveness of representations, CONTRACLM also boosts the source code generation capability with 9% relative improvement on execution accuracy on the HumanEval benchmark.

pdf bib
Efficient Shapley Values Estimation by Amortization for Text Classification
Chenghao Yang | Fan Yin | He He | Kai-Wei Chang | Xiaofei Ma | Bing Xiang
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Despite the popularity of Shapley Values in explaining neural text classification models, computing them is prohibitive for large pretrained models due to a large number of model evaluations. In practice, Shapley Values are often estimated with a small number of stochastic model evaluations. However, we show that the estimated Shapley Values are sensitive to random seed choices – the top-ranked features often have little overlap across different seeds, especially on examples with longer input texts. This can only be mitigated by aggregating thousands of model evaluations, which on the other hand, induces substantial computational overheads. To mitigate the trade-off between stability and efficiency, we develop an amortized model that directly predicts each input feature’s Shapley Value without additional model evaluations. It is trained on a set of examples whose Shapley Values are estimated from a large number of model evaluations to ensure stability. Experimental results on two text classification datasets demonstrate that our amortized model estimates Shapley Values accurately with up to 60 times speedup compared to traditional methods. Further, our model does not suffer from stability issues as inference is deterministic. We release our code at https://github.com/yangalan123/Amortized-Interpretability.

pdf bib
ReCode: Robustness Evaluation of Code Generation Models
Shiqi Wang | Zheng Li | Haifeng Qian | Chenghao Yang | Zijian Wang | Mingyue Shang | Varun Kumar | Samson Tan | Baishakhi Ray | Parminder Bhatia | Ramesh Nallapati | Murali Krishna Ramanathan | Dan Roth | Bing Xiang
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Code generation models have achieved impressive performance. However, they tend to be brittle as slight edits to a prompt could lead to very different generations; these robustness properties, critical for user experience when deployed in real-life applications, are not well understood. Most existing works on robustness in text or code tasks have focused on classification, while robustness in generation tasks is an uncharted area and to date there is no comprehensive benchmark for robustness in code generation. In this paper, we propose ReCode, a comprehensive robustness evaluation benchmark for code generation models. We customize over 30 transformations specifically for code on docstrings, function and variable names, code syntax, and code format. They are carefully designed to be natural in real-life coding practice, preserve the original semantic meaning, and thus provide multifaceted assessments of a model’s robustness performance. With human annotators, we verified that over 90% of the perturbed prompts do not alter the semantic meaning of the original prompt. In addition, we define robustness metrics for code generation models considering the worst-case behavior under each type of perturbation, taking advantage of the fact that executing the generated code can serve as objective evaluation. We demonstrate ReCode on SOTA models using HumanEval, MBPP, as well as function completion tasks derived from them. Interesting observations include: better robustness for CodeGen over InCoder and GPT-J; models are most sensitive to syntax perturbations; more challenging robustness evaluation on MBPP over HumanEval.

pdf bib
Few-Shot Data-to-Text Generation via Unified Representation and Multi-Source Learning
Alexander Hanbo Li | Mingyue Shang | Evangelia Spiliopoulou | Jie Ma | Patrick Ng | Zhiguo Wang | Bonan Min | William Yang Wang | Kathleen McKeown | Vittorio Castelli | Dan Roth | Bing Xiang
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

In this paper, we present a novel approach for data-to-text generation that addresses the limitations of current methods that primarily focus on specific types of structured data. Our proposed method aims to improve performance in multi-task training, zero-shot and few-shot scenarios by providing a unified representation that can handle various forms of structured data such as tables, knowledge graph triples, and meaning representations. We demonstrate that our proposed approach can effectively adapt to new structured forms, and can improve performance in comparison to current methods. For example, our method resulted in a 66% improvement in zero-shot BLEU scores when transferring models trained on table inputs to a knowledge graph dataset. Our proposed method is an important step towards a more general data-to-text generation framework.

pdf bib
Exploring Continual Learning for Code Generation Models
Prateek Yadav | Qing Sun | Hantian Ding | Xiaopeng Li | Dejiao Zhang | Ming Tan | Parminder Bhatia | Xiaofei Ma | Ramesh Nallapati | Murali Krishna Ramanathan | Mohit Bansal | Bing Xiang
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

Large-scale code generation models such as Copilot and CodeT5 have achieved impressive performance. However, libraries are upgraded or deprecated very frequently and re-training large-scale language models is computationally expensive. Therefore, Continual Learning (CL) is an important aspect that remains under-explored in the code domain. In this paper, we introduce a benchmark called CodeTask-CL that covers a wide range of tasks, including code generation, translation, summarization, and refinement, with different input and output programming languages. Next, on our CodeTask-CL benchmark, we compare popular CL techniques from NLP and Vision domains. We find that effective methods like Prompt Pooling (PP) suffer from catastrophic forgetting due to the unstable training of the prompt selection mechanism caused by stark distribution shifts in coding tasks. We address this issue with our proposed method, Prompt Pooling with Teacher Forcing (PP-TF), that stabilizes training by enforcing constraints on the prompt selection mechanism and leads to a 21.54% improvement over Prompt Pooling. Along with the benchmark, we establish a training pipeline that can be used for CL on code models, which we believe can motivate further development of CL methods for code models.

pdf bib
Importance of Synthesizing High-quality Data for Text-to-SQL Parsing
Yiqun Hu | Yiyun Zhao | Jiarong Jiang | Wuwei Lan | Henghui Zhu | Anuj Chauhan | Alexander Hanbo Li | Lin Pan | Jun Wang | Chung-Wei Hang | Sheng Zhang | Jiang Guo | Mingwen Dong | Joseph Lilien | Patrick Ng | Zhiguo Wang | Vittorio Castelli | Bing Xiang
Findings of the Association for Computational Linguistics: ACL 2023

There has been increasing interest in synthesizing data to improve downstream text-to-SQL tasks. In this paper, we examined the existing synthesized datasets and discovered that state-of-the-art text-to-SQL algorithms did not further improve on popular benchmarks when trained with augmented synthetic data. We observed three shortcomings: illogical synthetic SQL queries from independent column sampling, arbitrary table joins, and language gaps between the synthesized SQL and natural language question (NLQ) pair. To address these issues, we propose a novel synthesis framework that imposes strong typing constraints, incorporates key relationships from schema, and conducts schema-distance-weighted column sampling. We also adopt an intermediate representation (IR) for the SQL-to-text task to further improve the quality of the generated NLQ. When existing powerful text-to-SQL parsers are pretrained on our high-quality synthesized data, these models have significant accuracy boosts and achieve new state-of-the-art performance on Spider. We also demonstrate the effectiveness of our techniques with ablation studies

pdf bib
Generate then Select: Open-ended Visual Question Answering Guided by World Knowledge
Xingyu Fu | Sheng Zhang | Gukyeong Kwon | Pramuditha Perera | Henghui Zhu | Yuhao Zhang | Alexander Hanbo Li | William Yang Wang | Zhiguo Wang | Vittorio Castelli | Patrick Ng | Dan Roth | Bing Xiang
Findings of the Association for Computational Linguistics: ACL 2023

The open-ended Visual Question Answering (VQA) task requires AI models to jointly reason over visual and natural language inputs using world knowledge. Recently, pre-trained Language Models (PLM) such as GPT-3 have been applied to the task and shown to be powerful world knowledge sources. However, these methods suffer from low knowledge coverage caused by PLM bias – the tendency to generate certain tokens over other tokens regardless of prompt changes, and high dependency on the PLM quality – only models using GPT-3 can achieve the best result. To address the aforementioned challenges, we propose RASO: a new VQA pipeline that deploys a generate-then-select strategy guided by world knowledge for the first time. Rather than following the de facto standard to train a multi-modal model that directly generates the VQA answer, {pasted macro ‘MODEL’}name first adopts PLM to generate all the possible answers, and then trains a lightweight answer selection model for the correct answer. As proved in our analysis, RASO expands the knowledge coverage from in-domain training data by a large margin. We provide extensive experimentation and show the effectiveness of our pipeline by advancing the state-of-the-art by 4.1% on OK-VQA, without additional computation cost.

pdf bib
RobustQA: Benchmarking the Robustness of Domain Adaptation for Open-Domain Question Answering
Rujun Han | Peng Qi | Yuhao Zhang | Lan Liu | Juliette Burger | William Yang Wang | Zhiheng Huang | Bing Xiang | Dan Roth
Findings of the Association for Computational Linguistics: ACL 2023

Open-domain question answering (ODQA) is a crucial task in natural language processing. A typical ODQA system relies on a retriever module to select relevant contexts from a large corpus for a downstream reading comprehension model. Existing ODQA datasets consist mainly of Wikipedia corpus, and are insufficient to study models’ generalizability across diverse domains as models are trained and evaluated on the same genre of data. We propose **RobustQA**, a novel benchmark consisting of datasets from 8 different domains, which facilitates the evaluation of ODQA’s domain robustness. To build **RobustQA**, we annotate QA pairs in retrieval datasets with rigorous quality control. We further examine improving QA performances by incorporating unsupervised learning methods with target-domain corpus and adopting large generative language models. These methods can effectively improve model performances on **RobustQA**. However, experimental results demonstrate a significant gap from in-domain training, suggesting that **RobustQA** is a challenging benchmark to evaluate ODQA domain robustness.

pdf bib
Benchmarking Diverse-Modal Entity Linking with Generative Models
Sijia Wang | Alexander Hanbo Li | Henghui Zhu | Sheng Zhang | Pramuditha Perera | Chung-Wei Hang | Jie Ma | William Yang Wang | Zhiguo Wang | Vittorio Castelli | Bing Xiang | Patrick Ng
Findings of the Association for Computational Linguistics: ACL 2023

Entities can be expressed in diverse formats, such as texts, images, or column names and cell values in tables. While existing entity linking (EL) models work well on per modality configuration, such as text-only EL, visual grounding or schema linking, it is more challenging to design a unified model for diverse modality configurations. To bring various modality configurations together, we constructed a benchmark for diverse-modal EL (DMEL) from existing EL datasets, covering all three modalities including text, image and table. To approach the DMEL task, we proposed a generative diverse-modal model (GDMM) following a multimodal-encoder-decoder paradigm. Pre-training GDMM with rich corpora builds a solid foundation for DMEL without storing the entire KB for inference. Fine-tuning GDMM builds a stronger DMEL baseline, outperforming state-of-the-art task-specific EL models by 8.51 F1 score on average. Additionally, extensive error analyses are conducted to highlight the challenge of DMEL, facilitating future researches on this task.

2022

pdf bib
Improving Text-to-SQL Semantic Parsing with Fine-grained Query Understanding
Jun Wang | Patrick Ng | Alexander Hanbo Li | Jiarong Jiang | Zhiguo Wang | Bing Xiang | Ramesh Nallapati | Sudipta Sengupta
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing: Industry Track

Most recent research on Text-to-SQL semantic parsing relies on either parser itself or simple heuristic based approach to understand natural language query (NLQ). When synthesizing a SQL query, there is no explicit semantic information of NLQ available to the parser which leads to undesirable generalization performance. In addition, without lexical-level fine-grained query understanding, linking between query and database can only rely on fuzzy string match which leads to suboptimal performance in real applications. In view of this, in this paper we present a general-purpose, modular neural semantic parsing framework that is based on token-level fine-grained query understanding. Our framework consists of three modules: named entity recognizer (NER), neural entity linker (NEL) and neural semantic parser (NSP). By jointly modeling query and database, NER model analyzes user intents and identifies entities in the query. NEL model links typed entities to schema and cell values in database. Parser model leverages available semantic information and linking results and synthesizes tree-structured SQL queries based on dynamically generated grammar. Experiments on SQUALL, a newly released semantic parsing dataset, show that we can achieve 56.8% execution accuracy on WikiTableQuestions (WTQ) test set, which outperforms the state-of-the-art model by 2.7%.

pdf bib
Learning Dialogue Representations from Consecutive Utterances
Zhihan Zhou | Dejiao Zhang | Wei Xiao | Nicholas Dingwall | Xiaofei Ma | Andrew Arnold | Bing Xiang
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Learning high-quality dialogue representations is essential for solving a variety of dialogue-oriented tasks, especially considering that dialogue systems often suffer from data scarcity. In this paper, we introduce Dialogue Sentence Embedding (DSE), a self-supervised contrastive learning method that learns effective dialogue representations suitable for a wide range of dialogue tasks. DSE learns from dialogues by taking consecutive utterances of the same dialogue as positive pairs for contrastive learning. Despite its simplicity, DSE achieves significantly better representation capability than other dialogue representation and universal sentence representation models. We evaluate DSE on five downstream dialogue tasks that examine dialogue representation at different semantic granularities. Experiments in few-shot and zero-shot settings show that DSE outperforms baselines by a large margin, for example, it achieves 13% average performance improvement over the strongest unsupervised baseline in 1-shot intent classification on 6 datasets. We also provide analyses on the benefits and limitations of our model.

pdf bib
DQ-BART: Efficient Sequence-to-Sequence Model via Joint Distillation and Quantization
Zheng Li | Zijian Wang | Ming Tan | Ramesh Nallapati | Parminder Bhatia | Andrew Arnold | Bing Xiang | Dan Roth
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

Large-scale pre-trained sequence-to-sequence models like BART and T5 achieve state-of-the-art performance on many generative NLP tasks. However, such models pose a great challenge in resource-constrained scenarios owing to their large memory requirements and high latency. To alleviate this issue, we propose to jointly distill and quantize the model, where knowledge is transferred from the full-precision teacher model to the quantized and distilled low-precision student model. Empirical analyses show that, despite the challenging nature of generative tasks, we were able to achieve a 16.5x model footprint compression ratio with little performance drop relative to the full-precision counterparts on multiple summarization and QA datasets. We further pushed the limit of compression ratio to 27.7x and presented the performance-efficiency trade-off for generative tasks using pre-trained models. To the best of our knowledge, this is the first work aiming to effectively distill and quantize sequence-to-sequence pre-trained models for language generation tasks.

2021

pdf bib
Pairwise Supervised Contrastive Learning of Sentence Representations
Dejiao Zhang | Shang-Wen Li | Wei Xiao | Henghui Zhu | Ramesh Nallapati | Andrew O. Arnold | Bing Xiang
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Many recent successes in sentence representation learning have been achieved by simply fine-tuning on the Natural Language Inference (NLI) datasets with triplet loss or siamese loss. Nevertheless, they share a common weakness: sentences in a contradiction pair are not necessarily from different semantic categories. Therefore, optimizing the semantic entailment and contradiction reasoning objective alone is inadequate to capture the high-level semantic structure. The drawback is compounded by the fact that the vanilla siamese or triplet losses only learn from individual sentence pairs or triplets, which often suffer from bad local optima. In this paper, we propose PairSupCon, an instance discrimination based approach aiming to bridge semantic entailment and contradiction understanding with high-level categorical concept encoding. We evaluate PairSupCon on various downstream tasks that involve understanding sentence semantics at different granularities. We outperform the previous state-of-the-art method with 10%–13% averaged improvement on eight clustering tasks, and 5%–6% averaged improvement on seven semantic textual similarity (STS) tasks.

pdf bib
Generative Context Pair Selection for Multi-hop Question Answering
Dheeru Dua | Cicero Nogueira dos Santos | Patrick Ng | Ben Athiwaratkun | Bing Xiang | Matt Gardner | Sameer Singh
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Compositional reasoning tasks such as multi-hop question answering require models to learn how to make latent decisions using only weak supervision from the final answer. Crowdsourced datasets gathered for these tasks, however, often contain only a slice of the underlying task distribution, which can induce unanticipated biases such as shallow word overlap between the question and context. Recent works have shown that discriminative training results in models that exploit these underlying biases to achieve a better held-out performance, without learning the right way to reason. We propose a generative context selection model for multi-hop QA that reasons about how the given question could have been generated given a context pair and not just independent contexts. We show that on HotpotQA, while being comparable to the state-of-the-art answering performance, our proposed generative passage selection model has a better performance (4.9% higher than baseline) on adversarial held-out set which tests robustness of model’s multi-hop reasoning capabilities.

pdf bib
Answering Ambiguous Questions through Generative Evidence Fusion and Round-Trip Prediction
Yifan Gao | Henghui Zhu | Patrick Ng | Cicero Nogueira dos Santos | Zhiguo Wang | Feng Nan | Dejiao Zhang | Ramesh Nallapati | Andrew O. Arnold | Bing Xiang
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

In open-domain question answering, questions are highly likely to be ambiguous because users may not know the scope of relevant topics when formulating them. Therefore, a system needs to find possible interpretations of the question, and predict one or multiple plausible answers. When multiple plausible answers are found, the system should rewrite the question for each answer to resolve the ambiguity. In this paper, we present a model that aggregates and combines evidence from multiple passages to adaptively predict a single answer or a set of question-answer pairs for ambiguous questions. In addition, we propose a novel round-trip prediction approach to iteratively generate additional interpretations that our model fails to find in the first pass, and then verify and filter out the incorrect question-answer pairs to arrive at the final disambiguated output. Our model, named Refuel, achieves a new state-of-the-art performance on the AmbigQA dataset, and shows competitive performance on NQ-Open and TriviaQA. The proposed round-trip prediction is a model-agnostic general approach for answering ambiguous open-domain questions, which improves our Refuel as well as several baseline models. We release source code for our models and experiments at https://github.com/amzn/refuel-open-domain-qa.

pdf bib
Dual Reader-Parser on Hybrid Textual and Tabular Evidence for Open Domain Question Answering
Alexander Hanbo Li | Patrick Ng | Peng Xu | Henghui Zhu | Zhiguo Wang | Bing Xiang
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

The current state-of-the-art generative models for open-domain question answering (ODQA) have focused on generating direct answers from unstructured textual information. However, a large amount of world’s knowledge is stored in structured databases, and need to be accessed using query languages such as SQL. Furthermore, query languages can answer questions that require complex reasoning, as well as offering full explainability. In this paper, we propose a hybrid framework that takes both textual and tabular evidences as input and generates either direct answers or SQL queries depending on which form could better answer the question. The generated SQL queries can then be executed on the associated databases to obtain the final answers. To the best of our knowledge, this is the first paper that applies Text2SQL to ODQA tasks. Empirically, we demonstrate that on several ODQA datasets, the hybrid methods consistently outperforms the baseline models that only takes homogeneous input by a large margin. Specifically we achieve the state-of-the-art performance on OpenSQuAD dataset using a T5-base model. In a detailed analysis, we demonstrate that the being able to generate structural SQL queries can always bring gains, especially for those questions that requires complex reasoning.

pdf bib
Improving Factual Consistency of Abstractive Summarization via Question Answering
Feng Nan | Cicero Nogueira dos Santos | Henghui Zhu | Patrick Ng | Kathleen McKeown | Ramesh Nallapati | Dejiao Zhang | Zhiguo Wang | Andrew O. Arnold | Bing Xiang
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

A commonly observed problem with the state-of-the art abstractive summarization models is that the generated summaries can be factually inconsistent with the input documents. The fact that automatic summarization may produce plausible-sounding yet inaccurate summaries is a major concern that limits its wide application. In this paper we present an approach to address factual consistency in summarization. We first propose an efficient automatic evaluation metric to measure factual consistency; next, we propose a novel learning algorithm that maximizes the proposed metric during model training. Through extensive experiments, we confirm that our method is effective in improving factual consistency and even overall quality of the summaries, as judged by both automatic metrics and human evaluation.

pdf bib
Supporting Clustering with Contrastive Learning
Dejiao Zhang | Feng Nan | Xiaokai Wei | Shang-Wen Li | Henghui Zhu | Kathleen McKeown | Ramesh Nallapati | Andrew O. Arnold | Bing Xiang
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Unsupervised clustering aims at discovering the semantic categories of data according to some distance measured in the representation space. However, different categories often overlap with each other in the representation space at the beginning of the learning process, which poses a significant challenge for distance-based clustering in achieving good separation between different categories. To this end, we propose Supporting Clustering with Contrastive Learning (SCCL) – a novel framework to leverage contrastive learning to promote better separation. We assess the performance of SCCL on short text clustering and show that SCCL significantly advances the state-of-the-art results on most benchmark datasets with 3%-11% improvement on Accuracy and 4%-15% improvement on Normalized Mutual Information. Furthermore, our quantitative analysis demonstrates the effectiveness of SCCL in leveraging the strengths of both bottom-up instance discrimination and top-down clustering to achieve better intra-cluster and inter-cluster distances when evaluated with the ground truth cluster labels.

pdf bib
Contrastive Document Representation Learning with Graph Attention Networks
Peng Xu | Xinchi Chen | Xiaofei Ma | Zhiheng Huang | Bing Xiang
Findings of the Association for Computational Linguistics: EMNLP 2021

Recent progress in pretrained Transformer-based language models has shown great success in learning contextual representation of text. However, due to the quadratic self-attention complexity, most of the pretrained Transformers models can only handle relatively short text. It is still a challenge when it comes to modeling very long documents. In this work, we propose to use a graph attention network on top of the available pretrained Transformers model to learn document embeddings. This graph attention network allows us to leverage the high-level semantic structure of the document. In addition, based on our graph document model, we design a simple contrastive learning strategy to pretrain our models on a large amount of unlabeled corpus. Empirically, we demonstrate the effectiveness of our approaches in document classification and document retrieval tasks.

pdf bib
Retrieval, Re-ranking and Multi-task Learning for Knowledge-Base Question Answering
Zhiguo Wang | Patrick Ng | Ramesh Nallapati | Bing Xiang
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume

Question answering over knowledge bases (KBQA) usually involves three sub-tasks, namely topic entity detection, entity linking and relation detection. Due to the large number of entities and relations inside knowledge bases (KB), previous work usually utilized sophisticated rules to narrow down the search space and managed only a subset of KBs in memory. In this work, we leverage a retrieve-and-rerank framework to access KBs via traditional information retrieval (IR) method, and re-rank retrieved candidates with more powerful neural networks such as the pre-trained BERT model. Considering the fact that directly assigning a different BERT model for each sub-task may incur prohibitive costs, we propose to share a BERT encoder across all three sub-tasks and define task-specific layers on top of the shared layer. The unified model is then trained under a multi-task learning framework. Experiments show that: (1) Our IR-based retrieval method is able to collect high-quality candidates efficiently, thus enables our method adapt to large-scale KBs easily; (2) the BERT model improves the accuracy across all three sub-tasks; and (3) benefiting from multi-task learning, the unified model obtains further improvements with only 1/3 of the original parameters. Our final model achieves competitive results on the SimpleQuestions dataset and superior performance on the FreebaseQA dataset.

pdf bib
Entity-level Factual Consistency of Abstractive Text Summarization
Feng Nan | Ramesh Nallapati | Zhiguo Wang | Cicero Nogueira dos Santos | Henghui Zhu | Dejiao Zhang | Kathleen McKeown | Bing Xiang
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume

A key challenge for abstractive summarization is ensuring factual consistency of the generated summary with respect to the original document. For example, state-of-the-art models trained on existing datasets exhibit entity hallucination, generating names of entities that are not present in the source document. We propose a set of new metrics to quantify the entity-level factual consistency of generated summaries and we show that the entity hallucination problem can be alleviated by simply filtering the training data. In addition, we propose a summary-worthy entity classification task to the training process as well as a joint entity and summary generation approach, which yield further improvements in entity level metrics.

2020

pdf bib
Augmented Natural Language for Generative Sequence Labeling
Ben Athiwaratkun | Cicero Nogueira dos Santos | Jason Krone | Bing Xiang
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

We propose a generative framework for joint sequence labeling and sentence-level classification. Our model performs multiple sequence labeling tasks at once using a single, shared natural language output space. Unlike prior discriminative methods, our model naturally incorporates label semantics and shares knowledge across tasks. Our framework general purpose, performing well on few-shot learning, low resource, and high resource tasks. We demonstrate these advantages on popular named entity recognition, slot labeling, and intent classification benchmarks. We set a new state-of-the-art for few-shot slot labeling, improving substantially upon the previous 5-shot (75.0% to 90.9%) and 1-shot (70.4% to 81.0%) state-of-the-art results. Furthermore, our model generates large improvements (46.27% to 63.83%) in low resource slot labeling over a BERT baseline by incorporating label semantics. We also maintain competitive results on high resource tasks, performing within two points of the state-of-the-art on all tasks and setting a new state-of-the-art on the SNIPS dataset.

pdf bib
Beyond [CLS] through Ranking by Generation
Cicero Nogueira dos Santos | Xiaofei Ma | Ramesh Nallapati | Zhiheng Huang | Bing Xiang
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Generative models for Information Retrieval, where ranking of documents is viewed as the task of generating a query from a document’s language model, were very successful in various IR tasks in the past. However, with the advent of modern deep neural networks, attention has shifted to discriminative ranking functions that model the semantic similarity of documents and queries instead. Recently, deep generative models such as GPT2 and BART have been shown to be excellent text generators, but their effectiveness as rankers have not been demonstrated yet. In this work, we revisit the generative framework for information retrieval and show that our generative approaches are as effective as state-of-the-art semantic similarity-based discriminative models for the answer selection task. Additionally, we demonstrate the effectiveness of unlikelihood losses for IR.

pdf bib
End-to-End Synthetic Data Generation for Domain Adaptation of Question Answering Systems
Siamak Shakeri | Cicero Nogueira dos Santos | Henghui Zhu | Patrick Ng | Feng Nan | Zhiguo Wang | Ramesh Nallapati | Bing Xiang
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

We propose an end-to-end approach for synthetic QA data generation. Our model comprises a single transformer-based encoder-decoder network that is trained end-to-end to generate both answers and questions. In a nutshell, we feed a passage to the encoder and ask the decoder to generate a question and an answer token-by-token. The likelihood produced in the generation process is used as a filtering score, which avoids the need for a separate filtering model. Our generator is trained by fine-tuning a pretrained LM using maximum likelihood estimation. The experimental results indicate significant improvements in the domain adaptation of QA models outperforming current state-of-the-art methods.

pdf bib
Template-Based Question Generation from Retrieved Sentences for Improved Unsupervised Question Answering
Alexander Fabbri | Patrick Ng | Zhiguo Wang | Ramesh Nallapati | Bing Xiang
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Question Answering (QA) is in increasing demand as the amount of information available online and the desire for quick access to this content grows. A common approach to QA has been to fine-tune a pretrained language model on a task-specific labeled dataset. This paradigm, however, relies on scarce, and costly to obtain, large-scale human-labeled data. We propose an unsupervised approach to training QA models with generated pseudo-training data. We show that generating questions for QA training by applying a simple template on a related, retrieved sentence rather than the original context sentence improves downstream QA performance by allowing the model to learn more complex context-question relationships. Training a QA model on this data gives a relative improvement over a previous unsupervised model in F1 score on the SQuAD dataset by about 14%, and 20% when the answer is a named entity, achieving state-of-the-art performance on SQuAD for unsupervised QA.

pdf bib
Improve Transformer Models with Better Relative Position Embeddings
Zhiheng Huang | Davis Liang | Peng Xu | Bing Xiang
Findings of the Association for Computational Linguistics: EMNLP 2020

The transformer model has demonstrated superior results on NLP tasks including machine translation and question answering. In this paper, we argue that the position information is not fully utilized in existing work. For example, the initial proposal of a sinusoid embedding is fixed and not learnable. In this paper, we first review the absolute position embeddings and existing relative position embedding methods. We then propose new methods to encourage increased interaction between query, key and relative position embeddings in the self-attention mechanism. Our most promising approach is a generalization of the absolute position embedding. Our method results in increased accuracy compared to previous approaches in absolute and relative position embeddings on the SQuAD1.1 dataset. In addition, we address the inductive property of whether a position embedding can be robust enough to handle long sequences. We demonstrate empirically that our relative embedding method can be reasonably generalized to and is robust in the inductive perspective. Finally, we show that our proposed method can be effectively and efficiently adopted as a near drop-in replacement for improving the accuracy of large models with little computational overhead.

pdf bib
Margin-aware Unsupervised Domain Adaptation for Cross-lingual Text Labeling
Dejiao Zhang | Ramesh Nallapati | Henghui Zhu | Feng Nan | Cicero Nogueira dos Santos | Kathleen McKeown | Bing Xiang
Findings of the Association for Computational Linguistics: EMNLP 2020

Unsupervised domain adaptation addresses the problem of leveraging labeled data in a source domain to learn a well-performing model in a target domain where labels are unavailable. In this paper, we improve upon a recent theoretical work (Zhang et al., 2019b) and adopt the Margin Disparity Discrepancy (MDD) unsupervised domain adaptation algorithm to solve the cross-lingual text labeling problems. Experiments on cross-lingual document classification and NER demonstrate the proposed domain adaptation approach advances the state-of-the-art results by a large margin. Specifically, we improve MDD by efficiently optimizing the margin loss on the source domain via Virtual Adversarial Training (VAT). This bridges the gap between theory and the loss function used in the original work Zhang et al.(2019b), and thereby significantly boosts the performance. Our numerical results also indicate that VAT can remarkably improve the generalization performance of both domains for various domain adaptation approaches.

2019

pdf bib
Topic Modeling with Wasserstein Autoencoders
Feng Nan | Ran Ding | Ramesh Nallapati | Bing Xiang
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

We propose a novel neural topic model in the Wasserstein autoencoders (WAE) framework. Unlike existing variational autoencoder based models, we directly enforce Dirichlet prior on the latent document-topic vectors. We exploit the structure of the latent space and apply a suitable kernel in minimizing the Maximum Mean Discrepancy (MMD) to perform distribution matching. We discover that MMD performs much better than the Generative Adversarial Network (GAN) in matching high dimensional Dirichlet distribution. We further discover that incorporating randomness in the encoder output during training leads to significantly more coherent topics. To measure the diversity of the produced topics, we propose a simple topic uniqueness metric. Together with the widely used coherence measure NPMI, we offer a more wholistic evaluation of topic quality. Experiments on several real datasets show that our model produces significantly better topics than existing topic models.

pdf bib
Multi-passage BERT: A Globally Normalized BERT Model for Open-domain Question Answering
Zhiguo Wang | Patrick Ng | Xiaofei Ma | Ramesh Nallapati | Bing Xiang
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

BERT model has been successfully applied to open-domain QA tasks. However, previous work trains BERT by viewing passages corresponding to the same question as independent training instances, which may cause incomparable scores for answers from different passages. To tackle this issue, we propose a multi-passage BERT model to globally normalize answer scores across all passages of the same question, and this change enables our QA model find better answers by utilizing more passages. In addition, we find that splitting articles into passages with the length of 100 words by sliding window improves performance by 4%. By leveraging a passage ranker to select high-quality passages, multi-passage BERT gains additional 2%. Experiments on four standard benchmarks showed that our multi-passage BERT outperforms all state-of-the-art models on all benchmarks. In particular, on the OpenSQuAD dataset, our model gains 21.4% EM and 21.5% F1 over all non-BERT models, and 5.8% EM and 6.5% F1 over BERT-based models.

pdf bib
Domain Adaptation with BERT-based Domain Classification and Data Selection
Xiaofei Ma | Peng Xu | Zhiguo Wang | Ramesh Nallapati | Bing Xiang
Proceedings of the 2nd Workshop on Deep Learning Approaches for Low-Resource NLP (DeepLo 2019)

The performance of deep neural models can deteriorate substantially when there is a domain shift between training and test data. For example, the pre-trained BERT model can be easily fine-tuned with just one additional output layer to create a state-of-the-art model for a wide range of tasks. However, the fine-tuned BERT model suffers considerably at zero-shot when applied to a different domain. In this paper, we present a novel two-step domain adaptation framework based on curriculum learning and domain-discriminative data selection. The domain adaptation is conducted in a mostly unsupervised manner using a small target domain validation set for hyper-parameter tuning. We tested the framework on four large public datasets with different domain similarities and task types. Our framework outperforms a popular discrepancy-based domain adaptation method on most transfer tasks while consuming only a fraction of the training budget.

2018

pdf bib
Coherence-Aware Neural Topic Modeling
Ran Ding | Ramesh Nallapati | Bing Xiang
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

Topic models are evaluated based on their ability to describe documents well (i.e. low perplexity) and to produce topics that carry coherent semantic meaning. In topic modeling so far, perplexity is a direct optimization target. However, topic coherence, owing to its challenging computation, is not optimized for and is only evaluated after training. In this work, under a neural variational inference framework, we propose methods to incorporate a topic coherence objective into the training process. We demonstrate that such a coherence-aware topic model exhibits a similar level of perplexity as baseline models but achieves substantially higher topic coherence.

pdf bib
Neural Coreference Resolution with Deep Biaffine Attention by Joint Mention Detection and Mention Clustering
Rui Zhang | Cícero Nogueira dos Santos | Michihiro Yasunaga | Bing Xiang | Dragomir Radev
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

Coreference resolution aims to identify in a text all mentions that refer to the same real world entity. The state-of-the-art end-to-end neural coreference model considers all text spans in a document as potential mentions and learns to link an antecedent for each possible mention. In this paper, we propose to improve the end-to-end coreference resolution system by (1) using a biaffine attention model to get antecedent scores for each possible mention, and (2) jointly optimizing the mention detection accuracy and mention clustering accuracy given the mention cluster labels. Our model achieves the state-of-the-art performance on the CoNLL-2012 shared task English test set.

2017

pdf bib
Improved Neural Relation Detection for Knowledge Base Question Answering
Mo Yu | Wenpeng Yin | Kazi Saidul Hasan | Cicero dos Santos | Bing Xiang | Bowen Zhou
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Relation detection is a core component of many NLP applications including Knowledge Base Question Answering (KBQA). In this paper, we propose a hierarchical recurrent neural network enhanced by residual learning which detects KB relations given an input question. Our method uses deep residual bidirectional LSTMs to compare questions and relation names via different levels of abstraction. Additionally, we propose a simple KBQA system that integrates entity linking and our proposed relation detector to make the two components enhance each other. Our experimental results show that our approach not only achieves outstanding relation detection performance, but more importantly, it helps our KBQA system achieve state-of-the-art accuracy for both single-relation (SimpleQuestions) and multi-relation (WebQSP) QA benchmarks.

pdf bib
Group Sparse CNNs for Question Classification with Answer Sets
Mingbo Ma | Liang Huang | Bing Xiang | Bowen Zhou
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

Question classification is an important task with wide applications. However, traditional techniques treat questions as general sentences, ignoring the corresponding answer data. In order to consider answer information into question modeling, we first introduce novel group sparse autoencoders which refine question representation by utilizing group information in the answer set. We then propose novel group sparse CNNs which naturally learn question representation with respect to their answers by implanting group sparse autoencoders into traditional CNNs. The proposed model significantly outperform strong baselines on four datasets.

2016

pdf bib
Leveraging Sentence-level Information with Encoder LSTM for Semantic Slot Filling
Gakuto Kurata | Bing Xiang | Bowen Zhou | Mo Yu
Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing

pdf bib
Simple Question Answering by Attentive Convolutional Neural Network
Wenpeng Yin | Mo Yu | Bing Xiang | Bowen Zhou | Hinrich Schütze
Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers

This work focuses on answering single-relation factoid questions over Freebase. Each question can acquire the answer from a single fact of form (subject, predicate, object) in Freebase. This task, simple question answering (SimpleQA), can be addressed via a two-step pipeline: entity linking and fact selection. In fact selection, we match the subject entity in a fact candidate with the entity mention in the question by a character-level convolutional neural network (char-CNN), and match the predicate in that fact with the question by a word-level CNN (word-CNN). This work makes two main contributions. (i) A simple and effective entity linker over Freebase is proposed. Our entity linker outperforms the state-of-the-art entity linker over SimpleQA task. (ii) A novel attentive maxpooling is stacked over word-CNN, so that the predicate representation can be matched with the predicate-focused question representation more effectively. Experiments show that our system sets new state-of-the-art in this task.

pdf bib
ABCNN: Attention-Based Convolutional Neural Network for Modeling Sentence Pairs
Wenpeng Yin | Hinrich Schütze | Bing Xiang | Bowen Zhou
Transactions of the Association for Computational Linguistics, Volume 4

How to model a pair of sentences is a critical issue in many NLP tasks such as answer selection (AS), paraphrase identification (PI) and textual entailment (TE). Most prior work (i) deals with one individual task by fine-tuning a specific system; (ii) models each sentence’s representation separately, rarely considering the impact of the other sentence; or (iii) relies fully on manually designed, task-specific linguistic features. This work presents a general Attention Based Convolutional Neural Network (ABCNN) for modeling a pair of sentences. We make three contributions. (i) The ABCNN can be applied to a wide variety of tasks that require modeling of sentence pairs. (ii) We propose three attention schemes that integrate mutual influence between sentences into CNNs; thus, the representation of each sentence takes into consideration its counterpart. These interdependent sentence pair representations are more powerful than isolated sentence representations. (iii) ABCNNs achieve state-of-the-art performance on AS, PI and TE tasks. We release code at: https://github.com/yinwenpeng/Answer_Selection.

pdf bib
Abstractive Text Summarization using Sequence-to-sequence RNNs and Beyond
Ramesh Nallapati | Bowen Zhou | Cicero dos Santos | Çağlar Gu̇lçehre | Bing Xiang
Proceedings of the 20th SIGNLL Conference on Computational Natural Language Learning

pdf bib
Improved Neural Network-based Multi-label Classification with Better Initialization Leveraging Label Co-occurrence
Gakuto Kurata | Bing Xiang | Bowen Zhou
Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

pdf bib
Improved Representation Learning for Question Answer Matching
Ming Tan | Cicero dos Santos | Bing Xiang | Bowen Zhou
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

2015

pdf bib
Efficient Hyper-parameter Optimization for NLP Applications
Lidan Wang | Minwei Feng | Bowen Zhou | Bing Xiang | Sridhar Mahadevan
Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing

pdf bib
Classifying Relations by Ranking with Convolutional Neural Networks
Cícero dos Santos | Bing Xiang | Bowen Zhou
Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

pdf bib
Dependency-based Convolutional Neural Networks for Sentence Embedding
Mingbo Ma | Liang Huang | Bowen Zhou | Bing Xiang
Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)

2014

pdf bib
Improving Twitter Sentiment Analysis with Topic-Based Mixture Modeling and Semi-Supervised Training
Bing Xiang | Liang Zhou
Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

2013

pdf bib
Enlisting the Ghost: Modeling Empty Categories for Machine Translation
Bing Xiang | Xiaoqiang Luo | Bowen Zhou
Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

pdf bib
Two-Neighbor Orientation Model with Cross-Boundary Global Contexts
Hendra Setiawan | Bowen Zhou | Bing Xiang | Libin Shen
Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

pdf bib
Anchor Graph: Global Reordering Contexts for Statistical Machine Translation
Hendra Setiawan | Bowen Zhou | Bing Xiang
Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing

2011

pdf bib
Discriminative Feature-Tied Mixture Modeling for Statistical Machine Translation
Bing Xiang | Abraham Ittycheriah
Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies

pdf bib
Improving Reordering for Statistical Machine Translation with Smoothed Priors and Syntactic Features
Bing Xiang | Niyu Ge | Abraham Ittycheriah
Proceedings of Fifth Workshop on Syntax, Semantics and Structure in Statistical Translation

pdf bib
A Correction Model for Word Alignments
J. Scott McCarley | Abraham Ittycheriah | Salim Roukos | Bing Xiang | Jian-ming Xu
Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing

2010

pdf bib
Diversify and Combine: Improving Word Alignment for Machine Translation on Low-Resource Languages
Bing Xiang | Yonggang Deng | Bowen Zhou
Proceedings of the ACL 2010 Conference Short Papers

pdf bib
Feature-Rich Discriminative Phrase Rescoring for SMT
Fei Huang | Bing Xiang
Proceedings of the 23rd International Conference on Computational Linguistics (Coling 2010)

2009

pdf bib
Enriching SCFG rules directly from efficient bilingual chart parsing
Martin Čmejrek | Bowen Zhou | Bing Xiang
Proceedings of the 6th International Workshop on Spoken Language Translation: Papers

In this paper, we propose a new method for training translation rules for a Synchronous Context-free Grammar. A bilingual chart parser is used to generate the parse forest, and EM algorithm to estimate expected counts for each rule of the ruleset. Additional rules are constructed as combinations of reliable rules occurring in the parse forest. The new method of proposing additional translation rules is independent of word alignments. We present the theoretical background for this method, and initial experimental results on German-English translations of Europarl data.

2008

pdf bib
Prior Derivation Models For Formally Syntax-Based Translation Using Linguistically Syntactic Parsing and Tree Kernels
Bowen Zhou | Bing Xiang | Xiaodan Zhu | Yuqing Gao
Proceedings of the ACL-08: HLT Second Workshop on Syntax and Structure in Statistical Translation (SSST-2)

2007

pdf bib
Combining Outputs from Multiple Machine Translation Systems
Antti-Veikko Rosti | Necip Fazil Ayan | Bing Xiang | Spyros Matsoukas | Richard Schwartz | Bonnie Dorr
Human Language Technologies 2007: The Conference of the North American Chapter of the Association for Computational Linguistics; Proceedings of the Main Conference

Search
Co-authors