Canming Huang
2023
Exploring the Capacity of Pretrained Language Models for Reasoning about Actions and Change
Weinan He
|
Canming Huang
|
Zhanhao Xiao
|
Yongmei Liu
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Reasoning about actions and change (RAC) is essential to understand and interact with the ever-changing environment. Previous AI research has shown the importance of fundamental and indispensable knowledge of actions, i.e., preconditions and effects. However, traditional methods rely on logical formalization which hinders practical applications. With recent transformer-based language models (LMs), reasoning over text is desirable and seemingly feasible, leading to the question of whether LMs can effectively and efficiently learn to solve RAC problems. We propose four essential RAC tasks as a comprehensive textual benchmark and generate problems in a way that minimizes the influence of other linguistic requirements (e.g., grounding) to focus on RAC. The resulting benchmark, TRAC, encompassing problems of various complexities, facilitates a more granular evaluation of LMs, precisely targeting the structural generalization ability much needed for RAC. Experiments with three high-performing transformers indicate that additional efforts are needed to tackle challenges raised by TRAC.
2021
WinoLogic: A Zero-Shot Logic-based Diagnostic Dataset for Winograd Schema Challenge
Weinan He
|
Canming Huang
|
Yongmei Liu
|
Xiaodan Zhu
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing
The recent success of neural language models (NLMs) on the Winograd Schema Challenge has called for further investigation of the commonsense reasoning ability of these models. Previous diagnostic datasets rely on crowd-sourcing which fails to provide coherent commonsense crucial for solving WSC problems. To better evaluate NLMs, we propose a logic-based framework that focuses on high-quality commonsense knowledge. Specifically, we identify and collect formal knowledge formulas verified by theorem provers and translate such formulas into natural language sentences. Based on these true knowledge sentences, adversarial false ones are generated. We propose a new dataset named WinoLogic with these sentences. Given a problem in WinoLogic, NLMs need to decide whether the plausible knowledge sentences could correctly solve the corresponding WSC problems in a zero-shot setting. We also ask human annotators to validate WinoLogic to ensure it is human-agreeable. Experiments show that NLMs still struggle to comprehend commonsense knowledge as humans do, indicating that their reasoning ability could have been overestimated.
Improving Unsupervised Commonsense Reasoning Using Knowledge-Enabled Natural Language Inference
Canming Huang
|
Weinan He
|
Yongmei Liu
Findings of the Association for Computational Linguistics: EMNLP 2021
Recent methods based on pre-trained language models have shown strong supervised performance on commonsense reasoning. However, they rely on expensive data annotation and time-consuming training. Thus, we focus on unsupervised commonsense reasoning. We show the effectiveness of using a common framework, Natural Language Inference (NLI), to solve diverse commonsense reasoning tasks. By leveraging transfer learning from large NLI datasets, and injecting crucial knowledge from commonsense sources such as ATOMIC 2020 and ConceptNet, our method achieved state-of-the-art unsupervised performance on two commonsense reasoning tasks: WinoWhy and CommonsenseQA. Further analysis demonstrated the benefits of multiple categories of knowledge, but problems about quantities and antonyms are still challenging.
Search