Chang Yoo


2024

pdf bib
TLCR: Token-Level Continuous Reward for Fine-grained Reinforcement Learning from Human Feedback
Eunseop Yoon | Hee Suk Yoon | SooHwan Eom | Gunsoo Han | Daniel Nam | Daejin Jo | Kyoung-Woon On | Mark Hasegawa-Johnson | Sungwoong Kim | Chang Yoo
Findings of the Association for Computational Linguistics ACL 2024

Reinforcement Learning from Human Feedback (RLHF) leverages human preference data to train language models to align more closely with human essence. These human preference data, however, are labeled at the sequence level, creating a mismatch between sequence-level preference labels and tokens, which are autoregressively generated from the language model. Although several recent approaches have tried to provide token-level (i.e., dense) rewards for each individual token, these typically rely on predefined discrete reward values (e.g., positive: +1, negative: -1, neutral: 0), failing to account for varying degrees of preference inherent to each token. To address this limitation, we introduce TLCR (Token-Level Continuous Reward) for RLHF, which incorporates a discriminator trained to distinguish positive and negative tokens, and the confidence of the discriminator is used to assign continuous rewards to each token considering the context. Extensive experiments show that our proposed TLCR leads to consistent performance improvements over previous sequence-level or token-level discrete rewards on open-ended generation benchmarks.

2023

pdf bib
A Theory of Unsupervised Speech Recognition
Liming Wang | Mark Hasegawa-Johnson | Chang Yoo
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Unsupervised speech recognition ({pasted macro ‘ASRU’}/) is the problem of learning automatic speech recognition (ASR) systems from unpaired speech-only and text-only corpora. While various algorithms exist to solve this problem, a theoretical framework is missing to study their properties and address such issues as sensitivity to hyperparameters and training instability. In this paper, we proposed a general theoretical framework to study the properties of {pasted macro ‘ASRU’}/ systems based on random matrix theory and the theory of neural tangent kernels. Such a framework allows us to prove various learnability conditions and sample complexity bounds of {pasted macro ‘ASRU’}/. Extensive {pasted macro ‘ASRU’}/ experiments on synthetic languages with three classes of transition graphs provide strong empirical evidence for our theory (code available at https://github.com/cactuswiththoughts/UnsupASRTheory.gitcactuswiththoughts/UnsupASRTheory.git).

pdf bib
Listen, Decipher and Sign: Toward Unsupervised Speech-to-Sign Language Recognition
Liming Wang | Junrui Ni | Heting Gao | Jialu Li | Kai Chieh Chang | Xulin Fan | Junkai Wu | Mark Hasegawa-Johnson | Chang Yoo
Findings of the Association for Computational Linguistics: ACL 2023

Existing supervised sign language recognition systems rely on an abundance of well-annotated data. Instead, an unsupervised speech-to-sign language recognition (SSR-U) system learns to translate between spoken and sign languages by observing only non-parallel speech and sign-language corpora. We propose speech2sign-U, a neural network-based approach capable of both character-level and word-level SSR-U. Our approach significantly outperforms baselines directly adapted from unsupervised speech recognition (ASR-U) models by as much as 50% recall@10 on several challenging American sign language corpora with various levels of sample sizes, vocabulary sizes, and audio and visual variability. The code is available at https://github.com/cactuswiththoughts/UnsupSpeech2Sign.gitcactuswiththoughts/UnsupSpeech2Sign.git.

pdf bib
INTapt: Information-Theoretic Adversarial Prompt Tuning for Enhanced Non-Native Speech Recognition
Eunseop Yoon | Hee Suk Yoon | John Harvill | Mark Hasegawa-Johnson | Chang Yoo
Findings of the Association for Computational Linguistics: ACL 2023

Automatic Speech Recognition (ASR) systems have attained unprecedented performance with large speech models pre-trained based on self-supervised speech representation learning. However, these pre-trained speech models suffer from representational bias as they tend to better represent those prominent accents (i.e., native (L1) English accent) in the pre-training speech corpus than less represented accents, resulting in a deteriorated performance for non-native (L2) English accents. Although there have been some approaches to mitigate this issue, all of these methods require updating the pre-trained model weights. In this paper, we propose Information Theoretic Adversarial Prompt Tuning (INTapt), which introduces prompts concatenated to the original input that can re-modulate the attention of the pre-trained model such that the corresponding input resembles a native (L1) English speech without updating the backbone weights. INTapt is trained simultaneously in the following two manners: (1) adversarial training to reduce accent feature dependence between the original input and the prompt-concatenated input and (2) training to minimize CTC loss for improving ASR performance to a prompt-concatenated input. Experimental results show that INTapt improves the performance of L2 English and increases feature similarity between L2 and L1 accents.

pdf bib
Efficient Latent Variable Modeling for Knowledge-Grounded Dialogue Generation
Gunsoo Han | Daejin Jo | Daniel Nam | Eunseop Yoon | Taehwan Kwon | Seungeun Rho | Kyoung-Woon On | Chang Yoo | Sungwoong Kim
Findings of the Association for Computational Linguistics: EMNLP 2023

Knowledge-grounded dialogue generation requires first retrieving appropriate external knowledge based on a conversational context and then generating a response grounded on the retrieved knowledge. In general, these two sequential modules, a knowledge retriever and a response generator, have been separately trained in a supervised manner. However, obtaining intermediate labels of the ground-truth knowledge is expensive, especially in open-domain conversations. Latent variable modeling avoids this need for the labels. In this paper, we propose an efficient algorithm for this latent variable modeling that is able to leverage a large amount of dialogue data. Rather than directly training the complex retriever, we adapt a query generator with an off-the-shelf retriever, and the query generator and response generator are simultaneously trained over the latent variable of query. Moreover, we employ lower bound of the evidence as a training objective and modify it to robustly perform the joint training. Experimental results on diverse knowledge-grounded dialogue datasets show that the proposed algorithm significantly outperforms the supervised learning algorithm even without the use of the annotated knowledge while maintaining efficiency and scalability.

pdf bib
HEAR: Hearing Enhanced Audio Response for Video-grounded Dialogue
Sunjae Yoon | Dahyun Kim | Eunseop Yoon | Hee Yoon | Junyeong Kim | Chang Yoo
Findings of the Association for Computational Linguistics: EMNLP 2023

Video-grounded Dialogue (VGD) aims to answer questions regarding a given multi-modal input comprising video, audio, and dialogue history. Although there have been numerous efforts in developing VGD systems to improve the quality of their responses, existing systems are competent only to incorporate the information in the video and text and tend to struggle in extracting the necessary information from the audio when generating appropriate responses to the question. The VGD system seems to be deaf, and thus, we coin this symptom of current systems’ ignoring audio data as a deaf response. To overcome the deaf response problem, Hearing Enhanced Audio Response (HEAR) framework is proposed to perform sensible listening by selectively attending to audio whenever the question requires it. The HEAR framework enhances the accuracy and audibility of VGD systems in a model-agnostic manner. HEAR is validated on VGD datasets (i.e., AVSD@DSTC7 and AVSD@DSTC8) and shows effectiveness with various VGD systems.

pdf bib
One-Shot and Few-Shot Exemplification Modeling
John Harvill | Hee Suk Yoon | Eunseop Yoon | Mark Hasegawa-Johnson | Chang Yoo
Proceedings of the Third Workshop on Natural Language Generation, Evaluation, and Metrics (GEM)

Exemplification modeling is a task where the goal is to produce a viable example sentence that uses a target word with a target definition. The task is non-trivial for polysemous words, and previous works have only explored settings where ample labeled training data is available. In this paper, we demonstrate that exemplification modeling can be performed without a large labeled training corpus by either changing the format of the task (one-shot) or prompting large language models (few-shot), and ablate key components of our proposed one-shot and few-shot systems. We provide extensive automatic and human evaluations of model performance and find that our proposed one-shot and few-shot approaches perform similarly to a fully supervised baseline. We compare and contrast each method in terms of labeled training dataset size, performance, and model size, and find that each technique has at least one tradeoff that another approach does not.

2022

pdf bib
Self-supervised Semantic-driven Phoneme Discovery for Zero-resource Speech Recognition
Liming Wang | Siyuan Feng | Mark Hasegawa-Johnson | Chang Yoo
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Phonemes are defined by their relationship to words: changing a phoneme changes the word. Learning a phoneme inventory with little supervision has been a longstanding challenge with important applications to under-resourced speech technology. In this paper, we bridge the gap between the linguistic and statistical definition of phonemes and propose a novel neural discrete representation learning model for self-supervised learning of phoneme inventory with raw speech and word labels. Under mild assumptions, we prove that the phoneme inventory learned by our approach converges to the true one with an exponentially low error rate. Moreover, in experiments on TIMIT and Mboshi benchmarks, our approach consistently learns a better phoneme-level representation and achieves a lower error rate in a zero-resource phoneme recognition task than previous state-of-the-art self-supervised representation learning algorithms.

pdf bib
Information-Theoretic Text Hallucination Reduction for Video-grounded Dialogue
Sunjae Yoon | Eunseop Yoon | Hee Suk Yoon | Junyeong Kim | Chang Yoo
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Video-grounded Dialogue (VGD) aims to decode an answer sentence to a question regarding a given video and dialogue context. Despite the recent success of multi-modal reasoning to generate answer sentences, existing dialogue systems still suffer from a text hallucination problem, which denotes indiscriminate text-copying from input texts without an understanding of the question. This is due to learning spurious correlations from the fact that answer sentences in the dataset usually include the words of input texts, thus the VGD system excessively relies on copying words from input texts by hoping those words to overlap with ground-truth texts. Hence, we design Text Hallucination Mitigating (THAM) framework, which incorporates Text Hallucination Regularization (THR) loss derived from the proposed information-theoretic text hallucination measurement approach. Applying THAM with current dialogue systems validates the effectiveness on VGD benchmarks (i.e., AVSD@DSTC7 and AVSD@DSTC8) and shows enhanced interpretability.

pdf bib
SMSMix: Sense-Maintained Sentence Mixup for Word Sense Disambiguation
Hee Suk Yoon | Eunseop Yoon | John Harvill | Sunjae Yoon | Mark Hasegawa-Johnson | Chang Yoo
Findings of the Association for Computational Linguistics: EMNLP 2022

Word Sense Disambiguation (WSD) is an NLP task aimed at determining the correct sense of a word in a sentence from discrete sense choices. Although current systems have attained unprecedented performances for such tasks, the nonuniform distribution of word senses during training generally results in systems performing poorly on rare senses. To this end, we consider data augmentation to increase the frequency of these least frequent senses (LFS) to reduce the distributional bias of senses during training. We propose Sense-Maintained Sentence Mixup (SMSMix), a novel word-level mixup method that maintains the sense of a target word. SMSMix smoothly blends two sentences using mask prediction while preserving the relevant span determined by saliency scores to maintain a specific word’s sense. To the best of our knowledge, this is the first attempt to apply mixup in NLP while preserving the meaning of a specific word. With extensive experiments, we validate that our augmentation method can effectively give more information about rare senses during training with maintained target sense label.

2021

pdf bib
Worldly Wise (WoW) - Cross-Lingual Knowledge Fusion for Fact-based Visual Spoken-Question Answering
Kiran Ramnath | Leda Sari | Mark Hasegawa-Johnson | Chang Yoo
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Although Question-Answering has long been of research interest, its accessibility to users through a speech interface and its support to multiple languages have not been addressed in prior studies. Towards these ends, we present a new task and a synthetically-generated dataset to do Fact-based Visual Spoken-Question Answering (FVSQA). FVSQA is based on the FVQA dataset, which requires a system to retrieve an entity from Knowledge Graphs (KGs) to answer a question about an image. In FVSQA, the question is spoken rather than typed. Three sub-tasks are proposed: (1) speech-to-text based, (2) end-to-end, without speech-to-text as an intermediate component, and (3) cross-lingual, in which the question is spoken in a language different from that in which the KG is recorded. The end-to-end and cross-lingual tasks are the first to require world knowledge from a multi-relational KG as a differentiable layer in an end-to-end spoken language understanding task, hence the proposed reference implementation is called Worldly-Wise (WoW).WoW is shown to perform end-to-end cross-lingual FVSQA at same levels of accuracy across 3 languages - English, Hindi, and Turkish.