Understanding users’ intentions in e-commerce platforms requires commonsense knowledge. In this paper, we present FolkScope, an intention knowledge graph construction framework, to reveal the structure of humans’ minds about purchasing items. As commonsense knowledge is usually ineffable and not expressed explicitly, it is challenging to perform information extraction. Thus, we propose a new approach that leverages the generation power of large language models (LLMs) and human-in-the-loop annotation to semi-automatically construct the knowledge graph. LLMs first generate intention assertions via e-commerce specific prompts to explain shopping behaviors, where the intention can be an open reason or a predicate falling into one of 18 categories aligning with ConceptNet, e.g., IsA, MadeOf, UsedFor, etc. Then we annotate plausibility and typicality labels of sampled intentions as training data in order to populate human judgments to all automatic generations. Last, to structurize the assertions, we propose pattern mining and conceptualization to form more condensed and abstract knowledge. Extensive evaluations and study demonstrate that our constructed knowledge graph can well model e-commerce knowledge and have many potential applications.
Multilingual biomedical entity linking (MBEL) aims to map language-specific mentions in the biomedical text to standardized concepts in a multilingual knowledge base (KB) such as Unified Medical Language System (UMLS). In this paper, we propose Con2GEN, a prompt-based controllable contrastive generation framework for MBEL, which summarizes multidimensional information of the UMLS concept mentioned in biomedical text into a natural sentence following a predefined template. Instead of tackling the MBEL problem with a discriminative classifier, we formulate it as a sequence-to-sequence generation task, which better exploits the shared dependencies between source mentions and target entities. Moreover, Con2GEN matches against UMLS concepts in as many languages and types as possible, hence facilitating cross-information disambiguation. Extensive experiments show that our model achieves promising performance improvements compared with several state-of-the-art techniques on the XL-BEL and the Mantra GSC datasets spanning 12 typologically diverse languages.
Representations of events described in text are important for various tasks. In this work, we present SWCC: a Simultaneous Weakly supervised Contrastive learning and Clustering framework for event representation learning. SWCC learns event representations by making better use of co-occurrence information of events. Specifically, we introduce a weakly supervised contrastive learning method that allows us to consider multiple positives and multiple negatives, and a prototype-based clustering method that avoids semantically related events being pulled apart. For model training, SWCC learns representations by simultaneously performing weakly supervised contrastive learning and prototype-based clustering. Experimental results show that SWCC outperforms other baselines on Hard Similarity and Transitive Sentence Similarity tasks. In addition, a thorough analysis of the prototype-based clustering method demonstrates that the learned prototype vectors are able to implicitly capture various relations between events.
Event extraction (EE) is crucial to downstream tasks such as new aggregation and event knowledge graph construction. Most existing EE datasets manually define fixed event types and design specific schema for each of them, failing to cover diverse events emerging from the online text. Moreover, news titles, an important source of event mentions, have not gained enough attention in current EE research. In this paper, we present Title2Event, a large-scale sentence-level dataset benchmarking Open Event Extraction without restricting event types. Title2Event contains more than 42,000 news titles in 34 topics collected from Chinese web pages. To the best of our knowledge, it is currently the largest manually annotated Chinese dataset for open event extraction. We further conduct experiments on Title2Event with different models and show that the characteristics of titles make it challenging for event extraction, addressing the significance of advanced study on this problem. The dataset and baseline codes are available at https://open-event-hub.github.io/title2event.
Though linguistic knowledge emerges during large-scale language model pretraining, recent work attempt to explicitly incorporate human-defined linguistic priors into task-specific fine-tuning. Infusing language models with syntactic or semantic knowledge from parsers has shown improvements on many language understanding tasks. To further investigate the effectiveness of structural linguistic priors, we conduct empirical study of replacing parsed graphs or trees with trivial ones (rarely carrying linguistic knowledge e.g., balanced tree) for tasks in the GLUE benchmark. Encoding with trivial graphs achieves competitive or even better performance in fully-supervised and few-shot settings. It reveals that the gains might not be significantly attributed to explicit linguistic priors but rather to more feature interactions brought by fusion layers. Hence we call for attention to using trivial graphs as necessary baselines to design advanced knowledge fusion methods in the future.
Large-scale pre-trained language models have demonstrated strong knowledge representation ability. However, recent studies suggest that even though these giant models contain rich simple commonsense knowledge (e.g., bird can fly and fish can swim.), they often struggle with complex commonsense knowledge that involves multiple eventualities (verb-centric phrases, e.g., identifying the relationship between “Jim yells at Bob” and “Bob is upset”). To address this issue, in this paper, we propose to help pre-trained language models better incorporate complex commonsense knowledge. Unlike direct fine-tuning approaches, we do not focus on a specific task and instead propose a general language model named CoCoLM. Through the careful training over a large-scale eventuality knowledge graph ASER, we successfully teach pre-trained language models (i.e., BERT and RoBERTa) rich multi-hop commonsense knowledge among eventualities. Experiments on multiple commonsense tasks that require the correct understanding of eventualities demonstrate the effectiveness of CoCoLM.
We present Mask-then-Fill, a flexible and effective data augmentation framework for event extraction. Our approach allows for more flexible manipulation of text and thus can generate more diverse data while keeping the original event structure unchanged as much as possible. Specifically, it first randomly masks out an adjunct sentence fragment and then infills a variable-length text span with a fine-tuned infilling model. The main advantage lies in that it can replace a fragment of arbitrary length in the text with another fragment of variable length, compared to the existing methods which can only replace a single word or a fixed-length fragment. On trigger and argument extraction tasks, the proposed framework is more effective than baseline methods and it demonstrates particularly strong results in the low-resource setting. Our further analysis shows that it achieves a good balance between diversity and distributional similarity.
Hypernymy detection, a.k.a, lexical entailment, is a fundamental sub-task of many natural language understanding tasks. Previous explorations mostly focus on monolingual hypernymy detection on high-resource languages, e.g., English, but few investigate the low-resource scenarios. This paper addresses the problem of low-resource hypernymy detection by combining high-resource languages. We extensively compare three joint training paradigms and for the first time propose applying meta learning to relieve the low-resource issue. Experiments demonstrate the superiority of our method among the three settings, which substantially improves the performance of extremely low-resource languages by preventing over-fitting on small datasets.
We address hypernymy detection, i.e., whether an is-a relationship exists between words (x ,y), with the help of large textual corpora. Most conventional approaches to this task have been categorized to be either pattern-based or distributional. Recent studies suggest that pattern-based ones are superior, if large-scale Hearst pairs are extracted and fed, with the sparsity of unseen (x ,y) pairs relieved. However, they become invalid in some specific sparsity cases, where x or y is not involved in any pattern. For the first time, this paper quantifies the non-negligible existence of those specific cases. We also demonstrate that distributional methods are ideal to make up for pattern-based ones in such cases. We devise a complementary framework, under which a pattern-based and a distributional model collaborate seamlessly in cases which they each prefer. On several benchmark datasets, our framework demonstrates improvements that are both competitive and explainable.
Conventional word embeddings represent words with fixed vectors, which are usually trained based on co-occurrence patterns among words. In doing so, however, the power of such representations is limited, where the same word might be functionalized separately under different syntactic relations. To address this limitation, one solution is to incorporate relational dependencies of different words into their embeddings. Therefore, in this paper, we propose a multiplex word embedding model, which can be easily extended according to various relations among words. As a result, each word has a center embedding to represent its overall semantics, and several relational embeddings to represent its relational dependencies. Compared to existing models, our model can effectively distinguish words with respect to different relations without introducing unnecessary sparseness. Moreover, to accommodate various relations, we use a small dimension for relational embeddings and our model is able to keep their effectiveness. Experiments on selectional preference acquisition and word similarity demonstrate the effectiveness of the proposed model, and a further study of scalability also proves that our embeddings only need 1/20 of the original embedding size to achieve better performance.