Chen Lin


2024

pdf bib
Enhancing Chain-of-Thoughts Prompting with Iterative Bootstrapping in Large Language Models
Jiashuo Sun | Yi Luo | Yeyun Gong | Chen Lin | Yelong Shen | Jian Guo | Nan Duan
Findings of the Association for Computational Linguistics: NAACL 2024

Large language models (LLMs) can achieve impressive performance on various reasoning tasks by incorporating chain-of-thought (CoT) prompting, where step-by-step reasoning is provided to guide LLMs to generate answers to questions, and the question-rationale-answer triplets are utilized as demonstration exemplars. However, the reasoning chains of demonstrations generated by LLMs are observed to be prone to errors, which can subsequently lead to incorrect reasoning during inference. Furthermore, inappropriate exemplars, e.g., overly simplistic or complex exemplars depending on the question’s difficulty level, can affect the LLM’s performance. To address these issues, we introduce Iter-CoT (Iterative bootstrapping in Chain-of-Thoughts prompting). Iter-CoT has two advantages: (1) it adopts iterative bootstrapping that enables LLMs to rectify errors autonomously, resulting in more precise and comprehensive reasoning chains. (2) it selects exemplars of challenging yet answerable (i.e., the LLM has the potential to answer correctly) questions, enhancing the LLMs’ generalizability to answer questions with varying difficulty levels. Experimental results exhibit Iter-CoT superior performance on three distinct reasoning tasks on ten datasets.

pdf bib
Competition-Level Problems are Effective LLM Evaluators
Yiming Huang | Zhenghao Lin | Xiao Liu | Yeyun Gong | Shuai Lu | Fangyu Lei | Yaobo Liang | Yelong Shen | Chen Lin | Nan Duan | Weizhu Chen
Findings of the Association for Computational Linguistics ACL 2024

Large language models (LLMs) have demonstrated impressive reasoning capabilities, yet there is ongoing debate about these abilities and the potential data contamination problem recently. This paper aims to evaluate the reasoning capacities of LLMs, specifically in solving recent competition-level programming problems in Codeforces, which are expert-crafted and unique, requiring deep understanding and robust reasoning skills. We first provide a comprehensive evaluation of GPT-4’s perceived zero-shot performance on this task, considering various aspects such as problems’ release time, difficulties, and types of errors encountered. Surprisingly, the perceived performance of GPT-4 has experienced a cliff like decline in problems after September 2021 consistently across all the difficulties and types of problems, which shows the potential data contamination, as well as the challenges for any existing LLM to solve unseen complex reasoning problems. We further explore various approaches such as fine-tuning, Chain-of-Thought prompting and problem description simplification. Unfortunately, none of them is able to consistently mitigate the challenges. Through our work, we emphasize the importance of this excellent data source for assessing the genuine reasoning capabilities of LLMs, and foster the development of LLMs with stronger reasoning abilities and better generalization in the future.

pdf bib
APOLLO: An Optimized Training Approach for Long-form Numerical Reasoning
Jiashuo Sun | Hang Zhang | Chen Lin | Xiangdong Su | Yeyun Gong | Jian Guo
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Long-form numerical reasoning aims to generate a reasoning program to calculate the answer for a given question. Previous work followed a retriever-generator framework, where the retriever selects key facts from a long-form document, and the generator generates a reasoning program based on the retrieved facts. However, they treated all facts equally without considering the different contributions of facts with and without numerical information. Furthermore, they ignored program consistency, leading to the wrong punishment of programs that differed from the ground truth. In order to address these issues, we proposed APOLLO (An optimized training aPproach fOr Long-form numericaL reasOning), to improve long-form numerical reasoning. APOLLO includes a number-aware negative sampling strategy for the retriever to discriminate key numerical facts, and a consistency-based reinforcement learning with target program augmentation for the generator to ultimately increase the execution accuracy. Experimental results on the FinQA and ConvFinQA leaderboards verify the effectiveness of our proposed methods, achieving the new state-of-the-art.

pdf bib
Ensuring Safe and High-Quality Outputs: A Guideline Library Approach for Language Models
Yi Luo | Zhenghao Lin | YuHao Zhang | Jiashuo Sun | Chen Lin | Chengjin Xu | Xiangdong Su | Yelong Shen | Jian Guo | Yeyun Gong
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Large Language Models (LLMs) exhibit impressive capabilities but also present risks such as biased content generation and privacy issues. One of the current alignment techniques includes principle-driven integration, but it faces challenges arising from the imprecision of manually crafted rules and inadequate risk perception in models without safety training. To address these, we introduce Guide-Align, a two-stage approach. Initially, a safety-trained model identifies potential risks and formulates specific guidelines for various inputs, establishing a comprehensive library of guidelines and a model for input-guidelines retrieval. Subsequently, the retrieval model correlates new inputs with relevant guidelines, which guide LLMs in response generation to ensure safe and high-quality outputs, thereby aligning with human values. An additional optional stage involves fine-tuning a model with well-aligned datasets generated through the process implemented in the second stage.Our method customizes guidelines to accommodate diverse inputs, thereby enhancing the fine-grainedness and comprehensiveness of the guideline library. Furthermore, it incorporates safety expertise from a safety-trained LLM through a lightweight retrieval model.We evaluate our approach on three benchmarks, demonstrating significant improvements in LLM security and quality. Notably, our fine-tuned model, Labrador, even at 13 billion parameters, outperforms GPT-3.5-turbo and surpasses GPT-4 in alignment capabilities.

pdf bib
AnnoLLM: Making Large Language Models to Be Better Crowdsourced Annotators
Xingwei He | Zhenghao Lin | Yeyun Gong | A-Long Jin | Hang Zhang | Chen Lin | Jian Jiao | Siu Ming Yiu | Nan Duan | Weizhu Chen
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 6: Industry Track)

Many natural language processing (NLP) tasks rely on labeled data to train machine learning models with high performance. However, data annotation is time-consuming and expensive, especially when the task involves a large amount of data or requires specialized domains. Recently, GPT-3.5 series models have demonstrated remarkable few-shot and zero-shot ability across various NLP tasks. In this paper, we first claim that large language models (LLMs), such as GPT-3.5, can serve as an excellent crowdsourced annotator when provided with sufficient guidance and demonstrated examples. Accordingly, we propose AnnoLLM, an annotation system powered by LLMs, which adopts a two-step approach, explain-then-annotate. Concretely, we first prompt LLMs to provide explanations for why the specific ground truth answer/label was assigned for a given example. Then, we construct the few-shot chain-of-thought prompt with the self-generated explanation and employ it to annotate the unlabeled data with LLMs. Our experiment results on three tasks, including user input and keyword relevance assessment, BoolQ, and WiC, demonstrate that AnnoLLM surpasses or performs on par with crowdsourced annotators. Furthermore, we build the first conversation-based information retrieval dataset employing AnnoLLM. This dataset is designed to facilitate the development of retrieval models capable of retrieving pertinent documents for conversational text. Human evaluation has validated the dataset’s high quality.

2022

pdf bib
Sentiment-Aware Word and Sentence Level Pre-training for Sentiment Analysis
Shuai Fan | Chen Lin | Haonan Li | Zhenghao Lin | Jinsong Su | Hang Zhang | Yeyun Gong | JIan Guo | Nan Duan
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Most existing pre-trained language representation models (PLMs) are sub-optimal in sentiment analysis tasks, as they capture the sentiment information from word-level while under-considering sentence-level information. In this paper, we propose SentiWSP, a novel Sentiment-aware pre-trained language model with combined Word-level and Sentence-level Pre-training tasks.The word level pre-training task detects replaced sentiment words, via a generator-discriminator framework, to enhance the PLM’s knowledge about sentiment words.The sentence level pre-training task further strengthens the discriminator via a contrastive learning framework, with similar sentences as negative samples, to encode sentiments in a sentence.Extensive experimental results show that SentiWSP achieves new state-of-the-art performance on various sentence-level and aspect-level sentiment classification benchmarks. We have made our code and model publicly available at https://github.com/XMUDM/SentiWSP.

2021

pdf bib
EntityBERT: Entity-centric Masking Strategy for Model Pretraining for the Clinical Domain
Chen Lin | Timothy Miller | Dmitriy Dligach | Steven Bethard | Guergana Savova
Proceedings of the 20th Workshop on Biomedical Language Processing

Transformer-based neural language models have led to breakthroughs for a variety of natural language processing (NLP) tasks. However, most models are pretrained on general domain data. We propose a methodology to produce a model focused on the clinical domain: continued pretraining of a model with a broad representation of biomedical terminology (PubMedBERT) on a clinical corpus along with a novel entity-centric masking strategy to infuse domain knowledge in the learning process. We show that such a model achieves superior results on clinical extraction tasks by comparing our entity-centric masking strategy with classic random masking on three clinical NLP tasks: cross-domain negation detection, document time relation (DocTimeRel) classification, and temporal relation extraction. We also evaluate our models on the PubMedQA dataset to measure the models’ performance on a non-entity-centric task in the biomedical domain. The language addressed in this work is English.

2020

pdf bib
Defining and Learning Refined Temporal Relations in the Clinical Narrative
Kristin Wright-Bettner | Chen Lin | Timothy Miller | Steven Bethard | Dmitriy Dligach | Martha Palmer | James H. Martin | Guergana Savova
Proceedings of the 11th International Workshop on Health Text Mining and Information Analysis

We present refinements over existing temporal relation annotations in the Electronic Medical Record clinical narrative. We refined the THYME corpus annotations to more faithfully represent nuanced temporality and nuanced temporal-coreferential relations. The main contributions are in re-defining CONTAINS and OVERLAP relations into CONTAINS, CONTAINS-SUBEVENT, OVERLAP and NOTED-ON. We demonstrate that these refinements lead to substantial gains in learnability for state-of-the-art transformer models as compared to previously reported results on the original THYME corpus. We thus establish a baseline for the automatic extraction of these refined temporal relations. Although our study is done on clinical narrative, we believe it addresses far-reaching challenges that are corpus- and domain- agnostic.

pdf bib
A BERT-based One-Pass Multi-Task Model for Clinical Temporal Relation Extraction
Chen Lin | Timothy Miller | Dmitriy Dligach | Farig Sadeque | Steven Bethard | Guergana Savova
Proceedings of the 19th SIGBioMed Workshop on Biomedical Language Processing

Recently BERT has achieved a state-of-the-art performance in temporal relation extraction from clinical Electronic Medical Records text. However, the current approach is inefficient as it requires multiple passes through each input sequence. We extend a recently-proposed one-pass model for relation classification to a one-pass model for relation extraction. We augment this framework by introducing global embeddings to help with long-distance relation inference, and by multi-task learning to increase model performance and generalizability. Our proposed model produces results on par with the state-of-the-art in temporal relation extraction on the THYME corpus and is much “greener” in computational cost.

pdf bib
Extracting Relations between Radiotherapy Treatment Details
Danielle Bitterman | Timothy Miller | David Harris | Chen Lin | Sean Finan | Jeremy Warner | Raymond Mak | Guergana Savova
Proceedings of the 3rd Clinical Natural Language Processing Workshop

We present work on extraction of radiotherapy treatment information from the clinical narrative in the electronic medical records. Radiotherapy is a central component of the treatment of most solid cancers. Its details are described in non-standardized fashions using jargon not found in other medical specialties, complicating the already difficult task of manual data extraction. We examine the performance of several state-of-the-art neural methods for relation extraction of radiotherapy treatment details, with a goal of automating detailed information extraction. The neural systems perform at 0.82-0.88 macro-average F1, which approximates or in some cases exceeds the inter-annotator agreement. To the best of our knowledge, this is the first effort to develop models for radiotherapy relation extraction and one of the few efforts for relation extraction to describe cancer treatment in general.

2019

pdf bib
A BERT-based Universal Model for Both Within- and Cross-sentence Clinical Temporal Relation Extraction
Chen Lin | Timothy Miller | Dmitriy Dligach | Steven Bethard | Guergana Savova
Proceedings of the 2nd Clinical Natural Language Processing Workshop

Classic methods for clinical temporal relation extraction focus on relational candidates within a sentence. On the other hand, break-through Bidirectional Encoder Representations from Transformers (BERT) are trained on large quantities of arbitrary spans of contiguous text instead of sentences. In this study, we aim to build a sentence-agnostic framework for the task of CONTAINS temporal relation extraction. We establish a new state-of-the-art result for the task, 0.684F for in-domain (0.055-point improvement) and 0.565F for cross-domain (0.018-point improvement), by fine-tuning BERT and pre-training domain-specific BERT models on sentence-agnostic temporal relation instances with WordPiece-compatible encodings, and augmenting the labeled data with automatically generated “silver” instances.

2018

pdf bib
Self-training improves Recurrent Neural Networks performance for Temporal Relation Extraction
Chen Lin | Timothy Miller | Dmitriy Dligach | Hadi Amiri | Steven Bethard | Guergana Savova
Proceedings of the Ninth International Workshop on Health Text Mining and Information Analysis

Neural network models are oftentimes restricted by limited labeled instances and resort to advanced architectures and features for cutting edge performance. We propose to build a recurrent neural network with multiple semantically heterogeneous embeddings within a self-training framework. Our framework makes use of labeled, unlabeled, and social media data, operates on basic features, and is scalable and generalizable. With this method, we establish the state-of-the-art result for both in- and cross-domain for a clinical temporal relation extraction task.

2017

pdf bib
Neural Temporal Relation Extraction
Dmitriy Dligach | Timothy Miller | Chen Lin | Steven Bethard | Guergana Savova
Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers

We experiment with neural architectures for temporal relation extraction and establish a new state-of-the-art for several scenarios. We find that neural models with only tokens as input outperform state-of-the-art hand-engineered feature-based models, that convolutional neural networks outperform LSTM models, and that encoding relation arguments with XML tags outperforms a traditional position-based encoding.

pdf bib
Representations of Time Expressions for Temporal Relation Extraction with Convolutional Neural Networks
Chen Lin | Timothy Miller | Dmitriy Dligach | Steven Bethard | Guergana Savova
BioNLP 2017

Token sequences are often used as the input for Convolutional Neural Networks (CNNs) in natural language processing. However, they might not be an ideal representation for time expressions, which are long, highly varied, and semantically complex. We describe a method for representing time expressions with single pseudo-tokens for CNNs. With this method, we establish a new state-of-the-art result for a clinical temporal relation extraction task.

2016

pdf bib
Improving Temporal Relation Extraction with Training Instance Augmentation
Chen Lin | Timothy Miller | Dmitriy Dligach | Steven Bethard | Guergana Savova
Proceedings of the 15th Workshop on Biomedical Natural Language Processing

2015

pdf bib
Extracting Time Expressions from Clinical Text
Timothy Miller | Steven Bethard | Dmitriy Dligach | Chen Lin | Guergana Savova
Proceedings of BioNLP 15

2014

pdf bib
Temporal Annotation in the Clinical Domain
William F. Styler IV | Steven Bethard | Sean Finan | Martha Palmer | Sameer Pradhan | Piet C de Groen | Brad Erickson | Timothy Miller | Chen Lin | Guergana Savova | James Pustejovsky
Transactions of the Association for Computational Linguistics, Volume 2

This article discusses the requirements of a formal specification for the annotation of temporal information in clinical narratives. We discuss the implementation and extension of ISO-TimeML for annotating a corpus of clinical notes, known as the THYME corpus. To reflect the information task and the heavily inference-based reasoning demands in the domain, a new annotation guideline has been developed, “the THYME Guidelines to ISO-TimeML (THYME-TimeML)”. To clarify what relations merit annotation, we distinguish between linguistically-derived and inferentially-derived temporal orderings in the text. We also apply a top performing TempEval 2013 system against this new resource to measure the difficulty of adapting systems to the clinical domain. The corpus is available to the community and has been proposed for use in a SemEval 2015 task.

pdf bib
Descending-Path Convolution Kernel for Syntactic Structures
Chen Lin | Timothy Miller | Alvin Kho | Steven Bethard | Dmitriy Dligach | Sameer Pradhan | Guergana Savova
Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

2013

pdf bib
Discovering Temporal Narrative Containers in Clinical Text
Timothy Miller | Steven Bethard | Dmitriy Dligach | Sameer Pradhan | Chen Lin | Guergana Savova
Proceedings of the 2013 Workshop on Biomedical Natural Language Processing