Chengjin Xu


2024

pdf bib
Ensuring Safe and High-Quality Outputs: A Guideline Library Approach for Language Models
Yi Luo | Zhenghao Lin | YuHao Zhang | Jiashuo Sun | Chen Lin | Chengjin Xu | Xiangdong Su | Yelong Shen | Jian Guo | Yeyun Gong
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Large Language Models (LLMs) exhibit impressive capabilities but also present risks such as biased content generation and privacy issues. One of the current alignment techniques includes principle-driven integration, but it faces challenges arising from the imprecision of manually crafted rules and inadequate risk perception in models without safety training. To address these, we introduce Guide-Align, a two-stage approach. Initially, a safety-trained model identifies potential risks and formulates specific guidelines for various inputs, establishing a comprehensive library of guidelines and a model for input-guidelines retrieval. Subsequently, the retrieval model correlates new inputs with relevant guidelines, which guide LLMs in response generation to ensure safe and high-quality outputs, thereby aligning with human values. An additional optional stage involves fine-tuning a model with well-aligned datasets generated through the process implemented in the second stage.Our method customizes guidelines to accommodate diverse inputs, thereby enhancing the fine-grainedness and comprehensiveness of the guideline library. Furthermore, it incorporates safety expertise from a safety-trained LLM through a lightweight retrieval model.We evaluate our approach on three benchmarks, demonstrating significant improvements in LLM security and quality. Notably, our fine-tuned model, Labrador, even at 13 billion parameters, outperforms GPT-3.5-turbo and surpasses GPT-4 in alignment capabilities.

pdf bib
Unlocking the Power of Large Language Models for Entity Alignment
Xuhui Jiang | Yinghan Shen | Zhichao Shi | Chengjin Xu | Wei Li | Zixuan Li | Jian Guo | Huawei Shen | Yuanzhuo Wang
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Entity Alignment (EA) is vital for integrating diverse knowledge graph (KG) data, playing a crucial role in data-driven AI applications. Traditional EA methods primarily rely on comparing entity embeddings, but their effectiveness is constrained by the limited input KG data and the capabilities of the representation learning techniques. Against this backdrop, we introduce ChatEA, an innovative framework that incorporates large language models (LLMs) to improve EA. To address the constraints of limited input KG data, ChatEA introduces a KG-code translation module that translates KG structures into a format understandable by LLMs, thereby allowing LLMs to utilize their extensive background knowledge to improve EA accuracy. To overcome the over-reliance on entity embedding comparisons, ChatEA implements a two-stage EA strategy that capitalizes on LLMs’ capability for multi-step reasoning in a dialogue format, thereby enhancing accuracy while preserving efficiency. Our experimental results affirm ChatEA’s superior performance, highlighting LLMs’ potential in facilitating EA tasks.The source code is available at https://anonymous.4open.science/r/ChatEA/.

2023

pdf bib
Temporal Extrapolation and Knowledge Transfer for Lifelong Temporal Knowledge Graph Reasoning
Zhongwu Chen | Chengjin Xu | Fenglong Su | Zhen Huang | Yong Dou
Findings of the Association for Computational Linguistics: EMNLP 2023

Real-world Temporal Knowledge Graphs keep growing with time and new entities and facts emerge continually, necessitating a model that can extrapolate to future timestamps and transfer knowledge for new components. Therefore, our work first dives into this more realistic issue, lifelong TKG reasoning, where existing methods can only address part of the challenges. Specifically, we formulate lifelong TKG reasoning as a temporal-path-based reinforcement learning (RL) framework. Then, we add temporal displacement into the action space of RL to extrapolate for the future and further propose a temporal-rule-based reward shaping to guide the training. To transfer and update knowledge, we design a new edge-aware message passing module, where the embeddings of new entities and edges are inductive. We conduct extensive experiments on three newly constructed benchmarks for lifelong TKG reasoning. Experimental results show the outperforming effectiveness of our model against all well-adapted baselines.

2021

pdf bib
Temporal Knowledge Graph Completion using a Linear Temporal Regularizer and Multivector Embeddings
Chengjin Xu | Yung-Yu Chen | Mojtaba Nayyeri | Jens Lehmann
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Representation learning approaches for knowledge graphs have been mostly designed for static data. However, many knowledge graphs involve evolving data, e.g., the fact (The President of the United States is Barack Obama) is valid only from 2009 to 2017. This introduces important challenges for knowledge representation learning since the knowledge graphs change over time. In this paper, we present a novel time-aware knowledge graph embebdding approach, TeLM, which performs 4th-order tensor factorization of a Temporal knowledge graph using a Linear temporal regularizer and Multivector embeddings. Moreover, we investigate the effect of the temporal dataset’s time granularity on temporal knowledge graph completion. Experimental results demonstrate that our proposed models trained with the linear temporal regularizer achieve the state-of-the-art performances on link prediction over four well-established temporal knowledge graph completion benchmarks.

pdf bib
Time-aware Graph Neural Network for Entity Alignment between Temporal Knowledge Graphs
Chengjin Xu | Fenglong Su | Jens Lehmann
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Entity alignment aims to identify equivalent entity pairs between different knowledge graphs (KGs). Recently, the availability of temporal KGs (TKGs) that contain time information created the need for reasoning over time in such TKGs. Existing embedding-based entity alignment approaches disregard time information that commonly exists in many large-scale KGs, leaving much room for improvement. In this paper, we focus on the task of aligning entity pairs between TKGs and propose a novel Time-aware Entity Alignment approach based on Graph Neural Networks (TEA-GNN). We embed entities, relations and timestamps of different KGs into a vector space and use GNNs to learn entity representations. To incorporate both relation and time information into the GNN structure of our model, we use a self-attention mechanism which assigns different weights to different nodes with orthogonal transformation matrices computed from embeddings of the relevant relations and timestamps in a neighborhood. Experimental results on multiple real-world TKG datasets show that our method significantly outperforms the state-of-the-art methods due to the inclusion of time information.

pdf bib
Knowledge Graph Representation Learning using Ordinary Differential Equations
Mojtaba Nayyeri | Chengjin Xu | Franca Hoffmann | Mirza Mohtashim Alam | Jens Lehmann | Sahar Vahdati
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Knowledge Graph Embeddings (KGEs) have shown promising performance on link prediction tasks by mapping the entities and relations from a knowledge graph into a geometric space. The capability of KGEs in preserving graph characteristics including structural aspects and semantics, highly depends on the design of their score function, as well as the inherited abilities from the underlying geometry. Many KGEs use the Euclidean geometry which renders them incapable of preserving complex structures and consequently causes wrong inferences by the models. To address this problem, we propose a neuro differential KGE that embeds nodes of a KG on the trajectories of Ordinary Differential Equations (ODEs). To this end, we represent each relation (edge) in a KG as a vector field on several manifolds. We specifically parameterize ODEs by a neural network to represent complex manifolds and complex vector fields on the manifolds. Therefore, the underlying embedding space is capable to assume the shape of various geometric forms to encode heterogeneous subgraphs. Experiments on synthetic and benchmark datasets using state-of-the-art KGE models justify the ODE trajectories as a means to enable structure preservation and consequently avoiding wrong inferences.

2020

pdf bib
Knowledge Graph Embeddings in Geometric Algebras
Chengjin Xu | Mojtaba Nayyeri | Yung-Yu Chen | Jens Lehmann
Proceedings of the 28th International Conference on Computational Linguistics

Knowledge graph (KG) embedding aims at embedding entities and relations in a KG into a low dimensional latent representation space. Existing KG embedding approaches model entities and relations in a KG by utilizing real-valued , complex-valued, or hypercomplex-valued (Quaternion or Octonion) representations, all of which are subsumed into a geometric algebra. In this work, we introduce a novel geometric algebra-based KG embedding framework, GeomE, which utilizes multivector representations and the geometric product to model entities and relations. Our framework subsumes several state-of-the-art KG embedding approaches and is advantageous with its ability of modeling various key relation patterns, including (anti-)symmetry, inversion and composition, rich expressiveness with higher degree of freedom as well as good generalization capacity. Experimental results on multiple benchmark knowledge graphs show that the proposed approach outperforms existing state-of-the-art models for link prediction.

pdf bib
TeRo: A Time-aware Knowledge Graph Embedding via Temporal Rotation
Chengjin Xu | Mojtaba Nayyeri | Fouad Alkhoury | Hamed Shariat Yazdi | Jens Lehmann
Proceedings of the 28th International Conference on Computational Linguistics

In the last few years, there has been a surge of interest in learning representations of entities and relations in knowledge graph (KG). However, the recent availability of temporal knowledge graphs (TKGs) that contain time information for each fact created the need for reasoning over time in such TKGs. In this regard, we present a new approach of TKG embedding, TeRo, which defines the temporal evolution of entity embedding as a rotation from the initial time to the current time in the complex vector space. Specially, for facts involving time intervals, each relation is represented as a pair of dual complex embeddings to handle the beginning and the end of the relation, respectively. We show our proposed model overcomes the limitations of the existing KG embedding models and TKG embedding models and has the ability of learning and inferring various relation patterns over time. Experimental results on three different TKGs show that TeRo significantly outperforms existing state-of-the-art models for link prediction. In addition, we analyze the effect of time granularity on link prediction over TKGs, which as far as we know has not been investigated in previous literature.