Alignment training is crucial for enabling large language models (LLMs) to cater to human intentions and preferences. It is typically performed based on two stages with different objectives: instruction-following alignment and human-preference alignment. However, aligning LLMs with these objectives in sequence suffers from an inherent problem: the objectives may conflict, and the LLMs cannot guarantee to simultaneously align with the instructions and human preferences well. To response to these, in this work, we propose a Hybrid Alignment Training (Hbat) approach, based on alternating alignment and modified elastic weight consolidation methods. The basic idea is to alternate between different objectives during alignment training, so that better collaboration can be achieved between the two alignment tasks. We experiment with Hbat on summarization and dialogue tasks. Experimental results show that the proposed Hbat can significantly outperform all baselines. Notably, Hbat yields consistent performance gains over the traditional two-stage alignment training when using both proximal policy optimization and direct preference optimization.
Code generation models can benefit data scientists’ productivity by automatically generating code from context and text descriptions. An important measure of the modeling progress is whether a model can generate code that can correctly execute to solve the task. However, due to the lack of an evaluation dataset that directly supports execution-based model evaluation, existing work relies on code surface form similarity metrics (e.g., BLEU, CodeBLEU) for model selection, which can be inaccurate. To remedy this, we introduce ExeDS, an evaluation dataset for execution evaluation for data science code generation tasks. ExeDS contains a set of 534 problems from Jupyter Notebooks, each consisting of code context, task description, reference program, and the desired execution output. With ExeDS, we evaluate the execution performance of five state-of-the-art code generation models that have achieved high surface-form evaluation scores. Our experiments show that models with high surface-form scores do not necessarily perform well on execution metrics, and execution-based metrics can better capture model code generation errors. All the code and data will be released upon acceptance.
Developing models that can automatically generate detailed code explanation can greatly benefit software maintenance and programming education. However, existing code-to-text generation models often produce only high-level summaries of code that do not capture implementation-level choices essential for these scenarios. To fill in this gap, we propose the code explanation generation task. We first conducted a human study to identify the criteria for high-quality explanatory docstring for code. Based on that, we collected and refined a large-scale code docstring corpus and formulated automatic evaluation metrics that best match human assessments. Finally, we present a multi-stage fine-tuning strategy and baseline models for the task. Our experiments show that (1) our refined training dataset lets models achieve better performance in the explanation generation tasks compared to larger-scale unrefined data (15x larger), and (2) fine-tuned models can generate well-structured long docstrings comparable to human-written ones. We envision our training dataset, human-evaluation protocol, recommended metrics, and fine-tuning strategy can boost future code explanation research. The code and annotated data are available at https://github.com/subercui/CodeExp.
Knowledge distillation addresses the problem of transferring knowledge from a teacher model to a student model.In this process, we typically have multiple types of knowledge extracted from the teacher model.The problem is to make full use of them to train the student model.Our preliminary study shows that: (1) not all of the knowledge is necessary for learning a good student model, and (2) knowledge distillation can benefit from certain knowledge at different training steps.In response to these, we propose an actor-critic approach to selecting appropriate knowledge to transfer during the process of knowledge distillation.In addition, we offer a refinement of the training algorithm to ease the computational burden.Experimental results on the GLUE datasets show that our method outperforms several strong knowledge distillation baselines significantly.
This paper describes NiuTrans neural machine translation systems of the WMT 2021 news translation tasks. We made submissions to 9 language directions, including English2Chinese, Japanese, Russian, Icelandic and English2Hausa tasks. Our primary systems are built on several effective variants of Transformer, e.g., Transformer-DLCL, ODE-Transformer. We also utilize back-translation, knowledge distillation, post-ensemble, and iterative fine-tuning techniques to enhance the model performance further.
This paper describes the NiuTrans system for the WMT21 translation efficiency task. Following last year’s work, we explore various techniques to improve the efficiency while maintaining translation quality. We investigate the combinations of lightweight Transformer architectures and knowledge distillation strategies. Also, we improve the translation efficiency with graph optimization, low precision, dynamic batching, and parallel pre/post-processing. Putting these together, our system can translate 247,000 words per second on an NVIDIA A100, being 3× faster than our last year’s system. Our system is the fastest and has the lowest memory consumption on the GPU-throughput track. The code, model, and pipeline will be available at NiuTrans.NMT.
This paper addresses the efficiency challenge of Neural Architecture Search (NAS) by formulating the task as a ranking problem. Previous methods require numerous training examples to estimate the accurate performance of architectures, although the actual goal is to find the distinction between “good” and “bad” candidates. Here we do not resort to performance predictors. Instead, we propose a performance ranking method (RankNAS) via pairwise ranking. It enables efficient architecture search using much fewer training examples. Moreover, we develop an architecture selection method to prune the search space and concentrate on more promising candidates. Extensive experiments on machine translation and language modeling tasks show that RankNAS can design high-performance architectures while being orders of magnitude faster than state-of-the-art NAS systems.
This paper describes the submissions of the NiuTrans Team to the WNGT 2020 Efficiency Shared Task. We focus on the efficient implementation of deep Transformer models (Wang et al., 2019; Li et al., 2019) using NiuTensor, a flexible toolkit for NLP tasks. We explored the combination of deep encoder and shallow decoder in Transformer models via model compression and knowledge distillation. The neural machine translation decoding also benefits from FP16 inference, attention caching, dynamic batching, and batch pruning. Our systems achieve promising results in both translation quality and efficiency, e.g., our fastest system can translate more than 40,000 tokens per second with an RTX 2080 Ti while maintaining 42.9 BLEU on newstest2018.
This paper describes the submissions of the NiuTrans Team to the WMT 2020 Quality Estimation Shared Task. We participated in all tasks and all language pairs. We explored the combination of transfer learning, multi-task learning and model ensemble. Results on multiple tasks show that deep transformer machine translation models and multilingual pretraining methods significantly improve translation quality estimation performance. Our system achieved remarkable results in multiple level tasks, e.g., our submissions obtained the best results on all tracks in the sentence-level Direct Assessment task.
In conventional supervised training, a model is trained to fit all the training examples. However, having a monolithic model may not always be the best strategy, as examples could vary widely. In this work, we explore a different learning protocol that treats each example as a unique pseudo-task, by reducing the original learning problem to a few-shot meta-learning scenario with the help of a domain-dependent relevance function. When evaluated on the WikiSQL dataset, our approach leads to faster convergence and achieves 1.1%–5.4% absolute accuracy gains over the non-meta-learning counterparts.