Intelligent task-oriented dialogue systems (ToDs) are expected to continuously acquire new knowledge, also known as Continual Learning (CL), which is crucial to fit ever-changing user needs. However, catastrophic forgetting dramatically degrades the model performance in face of a long streamed curriculum. In this paper, we aim to overcome the forgetting problem in ToDs and propose a method (HESIT) with hyper-gradient-based exemplar strategy, which samples influential exemplars for periodic retraining. Instead of unilaterally observing data or models, HESIT adopts a profound exemplar selection strategy that considers the general performance of the trained model when selecting exemplars for each task domain. Specifically, HESIT analyzes the training data influence by tracing their hyper-gradient in the optimization process. Furthermore, HESIT avoids estimating Hessian to make it compatible for ToDs with a large pre-trained model. Experimental results show that HESIT effectively alleviates catastrophic forgetting by exemplar selection, and achieves state-of-the-art performance on the largest CL benchmark of ToDs in terms of all metrics.
Recent advances in large language models (LLMs) have promoted generative error correction (GER) for automatic speech recognition (ASR), which aims to predict the ground-truth transcription from the decoded N-best hypotheses. Thanks to the strong language generation ability of LLMs and rich information in the N-best list, GER shows great effectiveness in enhancing ASR results. However, it still suffers from two limitations: 1) LLMs are unaware of the source speech during GER, which may lead to results that are grammatically correct but violate the source speech content, 2) N-best hypotheses usually only vary in a few tokens, making it redundant to send all of them for GER, which could confuse LLM about which tokens to focus on and thus lead to increased miscorrection. In this paper, we propose ClozeGER, a new paradigm for ASR generative error correction. First, we introduce a multimodal LLM (i.e., SpeechGPT) to receive source speech as extra input to improve the fidelity of correction output. Then, we reformat GER as a cloze test with logits calibration to remove the input information redundancy and simplify GER with clear instructions. Experiments show that ClozeGER achieves a new breakthrough over vanilla GER on 9 popular ASR datasets.
In the rapidly evolving field of large language models (LLMs), data augmentation (DA) has emerged as a pivotal technique for enhancing model performance by diversifying training examples without the need for additional data collection. This survey explores the transformative impact of LLMs on DA, particularly addressing the unique challenges and opportunities they present in the context of natural language processing (NLP) and beyond. From both data and learning perspectives, we examine various strategies that utilize LLMs for data augmentation, including a novel exploration of learning paradigms where LLM-generated data is used for diverse forms of further training. Additionally, this paper highlights the primary open challenges faced in this domain, ranging from controllable data augmentation to multi-modal data augmentation. This survey highlights a paradigm shift introduced by LLMs in DA, and aims to serve as a comprehensive guide for researchers and practitioners.
To mitigate forgetting, existing lifelong event detection methods typically maintain a memory module and replay the stored memory data during the learning of a new task. However, the simple combination of memory data and new-task samples can still result in substantial forgetting of previously acquired knowledge, which may occur due to the potential overlap between the feature distribution of new data and the previously learned embedding space. Moreover, the model suffers from overfitting on the few memory samples rather than effectively remembering learned patterns. To address the challenges of forgetting and overfitting, we propose a novel method based on embedding space separation and compaction. Our method alleviates forgetting of previously learned tasks by forcing the feature distribution of new data away from the previous embedding space. It also mitigates overfitting by a memory calibration mechanism that encourages memory data to be close to its prototype to enhance intra-class compactness. In addition, the learnable parameters of the new task are initialized by drawing upon acquired knowledge from the previously learned task to facilitate forward knowledge transfer. With extensive experiments, we demonstrate that our method can significantly outperform previous state-of-the-art approaches.
As large language models (LLMs) have become the norm in NLP, demonstrating good performance in generation and reasoning tasks, one of its most fatal disadvantages is the lack of factual correctness. Generating unfactual texts not only leads to lower performances but also degrades the trust and validity of their applications. Chain-of-Thought (CoT) prompting improves trust and model performance on complex reasoning tasks by generating interpretable reasoning chains, but still suffers from factuality concerns in knowledge-intensive tasks. In this paper, we propose the Verify-and-Edit framework for CoT prompting, which seeks to increase prediction factuality by post-editing reasoning chains according to external knowledge. Building on top of GPT-3, our framework lead to accuracy improvements in multiple open-domain question-answering tasks.
Data annotation is the process of labeling data that could be used to train machine learning models. Having high quality annotation is crucial, as it allows the model to learn the relationship between the input data and the desired output. GPT-3, a large-scale language model developed by OpenAI, has demonstrated im- impressive zero- and few-shot performance on a wide range of NLP tasks. It is therefore natural to wonder whether it can be used to effectively annotate data for NLP tasks. In this paper, we evaluate the performance of GPT-3 as a data annotator by comparing it with traditional data annotation methods and analyzing its output on a range of tasks. Through this analysis, we aim to provide insight into the potential of GPT-3 as a general-purpose data annotator in NLP.
Prompt tuning (PT) which only tunes the embeddings of an additional sequence of tokens per task, keeping the pre-trained language model (PLM) frozen, has shown remarkable performance in few-shot learning. Despite this, PT has been shown to rely heavily on good initialization of the prompt embeddings. In this work, we study meta prompt tuning (MPT) to systematically explore how meta-learning can help improve (if it can) cross-task generalization in PT through learning to initialize the prompt embeddings from other relevant tasks. We empirically analyze a representative set of meta learning algorithms in a wide range of adaptation settings with different source/target task configurations on a large set of few-shot tasks. With extensive experiments and analysis, we demonstrate the effectiveness of MPT. We find the improvement to be significant particularly on classification tasks. For other kinds of tasks such as question answering, we observe that while MPT can outperform PT in most cases, it does not always outperform multi-task learning. We further provide an in-depth analysis from the perspective of task similarity.
Audio-visual speech recognition (AVSR) provides a promising solution to ameliorate the noise-robustness of audio-only speech recognition with visual information. However, most existing efforts still focus on audio modality to improve robustness considering its dominance in AVSR task, with noise adaptation techniques such as front-end denoise processing. Though effective, these methods are usually faced with two practical challenges: 1) lack of sufficient labeled noisy audio-visual training data in some real-world scenarios and 2) less optimal model generality to unseen testing noises. In this work, we investigate the noise-invariant visual modality to strengthen robustness of AVSR, which can adapt to any testing noises while without dependence on noisy training data, a.k.a., unsupervised noise adaptation. Inspired by human perception mechanism, we propose a universal viseme-phoneme mapping (UniVPM) approach to implement modality transfer, which can restore clean audio from visual signals to enable speech recognition under any noisy conditions. Extensive experiments on public benchmarks LRS3 and LRS2 show that our approach achieves the state-of-the-art under various noisy as well as clean conditions. In addition, we also outperform previous state-of-the-arts on visual speech recognition task.
With the evolution of Knowledge Graphs (KGs), new entities emerge which are not seen before. Representation learning of KGs in such an inductive setting aims to capture and transfer the structural patterns from existing entities to new entities. However, the performance of existing methods in inductive KGs are limited by sparsity and implicit transfer. In this paper, we propose VMCL, a Contrastive Learning (CL) framework with graph guided Variational autoencoder on Meta-KGs in the inductive setting. We first propose representation generation to capture the encoded and generated representations of entities, where the generated variations can densify representations with complementary features. Then, we design two CL objectives that work across entities and meta-KGs to simulate the transfer mode. With extensive experiments we demonstrate that our proposed VMCL can significantly outperform previous state-of-the-art baselines.
As Large Language Models (LLMs) become popular, there emerged an important trend of using multimodality to augment the LLMs’ generation ability, which enables LLMs to better interact with the world. However, there lacks a unified perception of at which stage and how to incorporate different modalities. In this survey, we review methods that assist and augment generative models by retrieving multimodal knowledge, whose formats range from images, codes, tables, graphs, to audio. Such methods offer a promising solution to important concerns such as factuality, reasoning, interpretability, and robustness. By providing an in-depth review, this survey is expected to provide scholars with a deeper understanding of the methods’ applications and encourage them to adapt existing techniques to the fast-growing field of LLMs.
Spurred by advancements in scale, large language models (LLMs) have demonstrated the ability to perform a variety of natural language processing (NLP) tasks zero-shot—i.e., without adaptation on downstream data. Recently, the debut of ChatGPT has drawn a great deal of attention from the natural language processing (NLP) community due to the fact that it can generate high-quality responses to human input and self-correct previous mistakes based on subsequent conversations. However, it is not yet known whether ChatGPT can serve as a generalist model that can perform many NLP tasks zero-shot. In this work, we empirically analyze the zero-shot learning ability of ChatGPT by evaluating it on 20 popular NLP datasets covering 7 representative task categories. With extensive empirical studies, we demonstrate both the effectiveness and limitations of the current version of ChatGPT. We find that ChatGPT performs well on many tasks favoring reasoning capabilities (e.g., arithmetic reasoning) while it still faces challenges when solving specific tasks such as sequence tagging. We additionally provide in-depth analysis through qualitative case studies.
Lifelong sequence generation (LSG), a problem in continual learning, aims to continually train a model on a sequence of generation tasks to learn constantly emerging new generation patterns while avoiding the forgetting of previous knowledge. Existing LSG methods mainly focus on maintaining old knowledge while paying little attention to knowledge transfer across tasks. In contrast, humans can better learn new tasks by leveraging previously acquired knowledge from similar tasks. Inspired by the learning paradigm of humans, we propose Dynamic Module Expansion and Adaptation (DMEA), which enables the model to dynamically determine the architecture for acquiring new knowledge based on task correlation and select the most similar previous tasks to facilitate adaptation to new tasks. In addition, as the learning process can easily be biased towards the current task which might cause more severe forgetting of previously learned knowledge, we propose dynamic gradient scaling to balance the learning of the current task and replayed tasks. With extensive experiments, we demonstrate that DMEA can consistently outperform existing methods in different LSG settings.
Existing continual relation learning (CRL) methods rely on plenty of labeled training data for learning a new task, which can be hard to acquire in real scenario as getting large and representative labeled data is often expensive and time-consuming. It is therefore necessary for the model to learn novel relational patterns with very few labeled data while avoiding catastrophic forgetting of previous task knowledge. In this paper, we formulate this challenging yet practical problem as continual few-shot relation learning (CFRL). Based on the finding that learning for new emerging few-shot tasks often results in feature distributions that are incompatible with previous tasks’ learned distributions, we propose a novel method based on embedding space regularization and data augmentation. Our method generalizes to new few-shot tasks and avoids catastrophic forgetting of previous tasks by enforcing extra constraints on the relational embeddings and by adding extra relevant data in a self-supervised manner. With extensive experiments we demonstrate that our method can significantly outperform previous state-of-the-art methods in CFRL task settings.