Chenwei Zhang


2024

pdf bib
Pinpointing Diffusion Grid Noise to Enhance Aspect Sentiment Quad Prediction
Linan Zhu | Xiangfan Chen | Xiaolei Guo | Chenwei Zhang | Zhechao Zhu | Zehai Zhou | Xiangjie Kong
Findings of the Association for Computational Linguistics ACL 2024

Aspect sentiment quad prediction (ASQP) has garnered significant attention in aspect-based sentiment analysis (ABSA). Current ASQP research primarily relies on pre-trained generative language models to produce templated sequences, often complemented by grid-based auxiliary methods. Despite these efforts, the persistent challenge of generation instability remains unresolved and the effectiveness of grid methods remains underexplored in current studies. To this end, we introduce Grid Noise Diffusion Pinpoint Network (GDP), a T5-based generative model aiming to tackle the issue of generation instability. The model consists of three novel modules, including Diffusion Vague Learning (DVL) to facilitate effective model learning and enhance overall robustness; Consistency Likelihood Learning (CLL) to discern the characteristics and commonalities of sentiment elements and thus reduce the impact of distributed noise; and GDP-FOR, a novel generation template, to enable models to generate outputs in a more natural way. Extensive experiments on four datasets demonstrate the remarkable effectiveness of our approach in addressing ASQP tasks.

pdf bib
Stronger, Lighter, Better: Towards Life-Long Attribute Value Extraction for E-Commerce Products
Tao Zhang | Chenwei Zhang | Xian Li | Jingbo Shang | Hoang Nguyen | Philip Yu
Findings of the Association for Computational Linguistics ACL 2024

Attribute value extraction involves identifying the value spans of predetermined attributes in product texts. This area of research has traditionally operated under a closed-world assumption, focusing on products from a static set of categories and their associated attributes. However, products in e-commerce stores are ever-increasing and evolving, calling for life-long learning. If continuously trained on the fast-increasing products and attributes, most existing solutions not only struggle for parameter efficiency but also endure foreseeable defects due to data contamination, catastrophic forgetting, etc. As a remedy, we propose and study a new task, which aims to effectively maintain a strong single model for many domains in a life-long learning fashion, without jeopardizing the model performance and parameter efficiency. We introduce factorization into the model and make it domain-aware by decoupling the modeling of product type and attribute, as a way to promote de-contamination and parameter efficiency while scaling up. Tuning the model with distillation prevents forgetting historical knowledge and enables continuous learning from emerging domains. Experiments on hundreds of domains showed that our model attains the near state-of-the-art performance with affordable parameter size, the least historical knowledge forgetting, and the greatest robustness against noises, whilst adding only a few parameters per domain when compared with competitive baselines.

pdf bib
CORI: CJKV Benchmark with Romanization Integration - a Step towards Cross-lingual Transfer beyond Textual Scripts
Hoang Nguyen | Chenwei Zhang | Ye Liu | Natalie Parde | Eugene Rohrbaugh | Philip S. Yu
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Naively assuming English as a source language may hinder cross-lingual transfer for many languages by failing to consider the importance of language contact. Some languages are more well-connected than others, and target languages can benefit from transferring from closely related languages; for many languages, the set of closely related languages does not include English. In this work, we study the impact of source language for cross-lingual transfer, demonstrating the importance of selecting source languages that have high contact with the target language. We also construct a novel benchmark dataset for close contact Chinese-Japanese-Korean-Vietnamese (CJKV) languages to further encourage in-depth studies of language contact. To comprehensively capture contact between these languages, we propose to integrate Romanized transcription beyond textual scripts via Contrastive Learning objectives, leading to enhanced cross-lingual representations and effective zero-shot cross-lingual transfer.

2023

pdf bib
PV2TEA: Patching Visual Modality to Textual-Established Information Extraction
Hejie Cui | Rongmei Lin | Nasser Zalmout | Chenwei Zhang | Jingbo Shang | Carl Yang | Xian Li
Findings of the Association for Computational Linguistics: ACL 2023

Information extraction, e.g., attribute value extraction, has been extensively studied and formulated based only on text. However, many attributes can benefit from image-based extraction, like color, shape, pattern, among others. The visual modality has long been underutilized, mainly due to multimodal annotation difficulty. In this paper, we aim to patch the visual modality to the textual-established attribute in- formation extractor. The cross-modality integration faces several unique challenges: (C1) images and textual descriptions are loosely paired intra-sample and inter-samples; (C2) images usually contain rich backgrounds that can mislead the prediction; (C3) weakly supervised labels from textual-established ex- tractors are biased for multimodal training. We present PV2TEA, an encoder-decoder architecture equipped with three bias reduction schemes: (S1) Augmented label-smoothed contrast to improve the cross-modality alignment for loosely-paired image and text; (S2) Attention-pruning that adaptively distinguishes the visual foreground; (S3) Two-level neighborhood regularization that mitigates the label textual bias via reliability estimation. Empirical results on real-world e-Commerce datasets1 demonstrate up to 11.74% absolute (20.97% relatively) F1 increase over unimodal baselines.

pdf bib
Enhancing Cross-lingual Transfer via Phonemic Transcription Integration
Hoang Nguyen | Chenwei Zhang | Tao Zhang | Eugene Rohrbaugh | Philip Yu
Findings of the Association for Computational Linguistics: ACL 2023

Previous cross-lingual transfer methods are restricted to orthographic representation learning via textual scripts. This limitation hampers cross-lingual transfer and is biased towards languages sharing similar well-known scripts. To alleviate the gap between languages from different writing scripts, we propose PhoneXL, a framework incorporating phonemic transcriptions as an additional linguistic modality beyond the traditional orthographic transcriptions for cross-lingual transfer. Particularly, we propose unsupervised alignment objectives to capture (1) local one-to-one alignment between the two different modalities, (2) alignment via multi-modality contexts to leverage information from additional modalities, and (3) alignment via multilingual contexts where additional bilingual dictionaries are incorporated. We also release the first phonemic-orthographic alignment dataset on two token-level tasks (Named Entity Recognition and Part-of-Speech Tagging) among the understudied but interconnected Chinese-Japanese-Korean-Vietnamese (CJKV) languages. Our pilot study reveals phonemic transcription provides essential information beyond the orthography to enhance cross-lingual transfer and bridge the gap among CJKV languages, leading to consistent improvements on cross-lingual token-level tasks over orthographic-based multilingual PLMs.

pdf bib
Concept2Box: Joint Geometric Embeddings for Learning Two-View Knowledge Graphs
Zijie Huang | Daheng Wang | Binxuan Huang | Chenwei Zhang | Jingbo Shang | Yan Liang | Zhengyang Wang | Xian Li | Christos Faloutsos | Yizhou Sun | Wei Wang
Findings of the Association for Computational Linguistics: ACL 2023

Knowledge graph embeddings (KGE) have been extensively studied to embed large-scale relational data for many real-world applications. Existing methods have long ignored the fact many KGs contain two fundamentally different views: high-level ontology-view concepts and fine-grained instance-view entities. They usually embed all nodes as vectors in one latent space. However, a single geometric representation fails to capture the structural differences between two views and lacks probabilistic semantics towards concepts’ granularity. We propose Concept2Box, a novel approach that jointly embeds the two views of a KG using dual geometric representations. We model concepts with box embeddings, which learn the hierarchy structure and complex relations such as overlap and disjoint among them. Box volumes can be interpreted as concepts’ granularity. Different from concepts, we model entities as vectors. To bridge the gap between concept box embeddings and entity vector embeddings, we propose a novel vector-to-box distance metric and learn both embeddings jointly. Experiments on both the public DBpedia KG and a newly-created industrial KG showed the effectiveness of Concept2Box.

pdf bib
GDA: Generative Data Augmentation Techniques for Relation Extraction Tasks
Xuming Hu | Aiwei Liu | Zeqi Tan | Xin Zhang | Chenwei Zhang | Irwin King | Philip S. Yu
Findings of the Association for Computational Linguistics: ACL 2023

Relation extraction (RE) tasks show promising performance in extracting relations from two entities mentioned in sentences, given sufficient annotations available during training. Such annotations would be labor-intensive to obtain in practice. Existing work adopts data augmentation techniques to generate pseudo-annotated sentences beyond limited annotations. These techniques neither preserve the semantic consistency of the original sentences when rule-based augmentations are adopted, nor preserve the syntax structure of sentences when expressing relations using seq2seq models, resulting in less diverse augmentations. In this work, we propose a dedicated augmentation technique for relational texts, named GDA, which uses two complementary modules to preserve both semantic consistency and syntax structures. We adopt a generative formulation and design a multi-tasking solution to achieve synergies. Furthermore, GDA adopts entity hints as the prior knowledge of the generative model to augment diverse sentences. Experimental results in three datasets under a low-resource setting showed that GDA could bring 2.0% F1 improvements compared with no augmentation technique.

pdf bib
Knowledge-Selective Pretraining for Attribute Value Extraction
Hui Liu | Qingyu Yin | Zhengyang Wang | Chenwei Zhang | Haoming Jiang | Yifan Gao | Zheng Li | Xian Li | Chao Zhang | Bing Yin | William Wang | Xiaodan Zhu
Findings of the Association for Computational Linguistics: EMNLP 2023

Attribute Value Extraction (AVE) aims to retrieve the values of attributes from the product profiles. The state-of-the-art methods tackle the AVE task through a question-answering (QA) paradigm, where the value is predicted from the context (i.e. product profile) given a query (i.e. attributes). Despite of the substantial advancements that have been made, the performance of existing methods on rare attributes is still far from satisfaction, and they cannot be easily extended to unseen attributes due to the poor generalization ability. In this work, we propose to leverage pretraining and transfer learning to address the aforementioned weaknesses. We first collect the product information from various E-commerce stores and retrieve a large number of (profile, attribute, value) triples, which will be used as the pretraining corpus. To more effectively utilize the retrieved corpus, we further design a Knowledge-Selective Framework (KSelF) based on query expansion that can be closely combined with the pretraining corpus to boost the performance. Meanwhile, considering the public AE-pub dataset contains considerable noise, we construct and contribute a larger benchmark EC-AVE collected from E-commerce websites. We conduct evaluation on both of these datasets. The experimental results demonstrate that our proposed KSelF achieves new state-of-the-art performance without pretraining. When incorporated with the pretraining corpus, the performance of KSelF can be further improved, particularly on the attributes with limited training resources.

pdf bib
Slot Induction via Pre-trained Language Model Probing and Multi-level Contrastive Learning
Hoang Nguyen | Chenwei Zhang | Ye Liu | Philip Yu
Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue

Recent advanced methods in Natural Language Understanding for Task-oriented Dialogue (TOD) Systems (e.g., intent detection and slot filling) require a large amount of annotated data to achieve competitive performance. In reality, token-level annotations (slot labels) are time-consuming and difficult to acquire. In this work, we study the Slot Induction (SI) task whose objective is to induce slot boundaries without explicit knowledge of token-level slot annotations. We propose leveraging Unsupervised Pre-trained Language Model (PLM) Probing and Contrastive Learning mechanism to exploit (1) unsupervised semantic knowledge extracted from PLM, and (2) additional sentence-level intent label signals available from TOD. Our approach is shown to be effective in SI task and capable of bridging the gaps with token-level supervised models on two NLU benchmark datasets. When generalized to emerging intents, our SI objectives also provide enhanced slot label representations, leading to improved performance on the Slot Filling tasks.

pdf bib
CoF-CoT: Enhancing Large Language Models with Coarse-to-Fine Chain-of-Thought Prompting for Multi-domain NLU Tasks
Hoang Nguyen | Ye Liu | Chenwei Zhang | Tao Zhang | Philip Yu
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

While Chain-of-Thought prompting is popular in reasoning tasks, its application to Large Language Models (LLMs) in Natural Language Understanding (NLU) is under-explored. Motivated by multi-step reasoning of LLMs, we propose Coarse-to-Fine Chain-of-Thought (CoF-CoT) approach that breaks down NLU tasks into multiple reasoning steps where LLMs can learn to acquire and leverage essential concepts to solve tasks from different granularities. Moreover, we propose leveraging semantic-based Abstract Meaning Representation (AMR) structured knowledge as an intermediate step to capture the nuances and diverse structures of utterances, and to understand connections between their varying levels of granularity. Our proposed approach is demonstrated effective in assisting the LLMs adapt to the multi-grained NLU tasks under both zero-shot and few-shot multi-domain settings.

pdf bib
Towards Open-World Product Attribute Mining: A Lightly-Supervised Approach
Liyan Xu | Chenwei Zhang | Xian Li | Jingbo Shang | Jinho D. Choi
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

We present a new task setting for attribute mining on e-commerce products, serving as a practical solution to extract open-world attributes without extensive human intervention. Our supervision comes from a high-quality seed attribute set bootstrapped from existing resources, and we aim to expand the attribute vocabulary of existing seed types, and also to discover any new attribute types automatically. A new dataset is created to support our setting, and our approach Amacer is proposed specifically to tackle the limited supervision. Especially, given that no direct supervision is available for those unseen new attributes, our novel formulation exploits self-supervised heuristic and unsupervised latent attributes, which attains implicit semantic signals as additional supervision by leveraging product context. Experiments suggest that our approach surpasses various baselines by 12 F1, expanding attributes of existing types significantly by up to 12 times, and discovering values from 39% new types.

pdf bib
Tab-Cleaner: Weakly Supervised Tabular Data Cleaning via Pre-training for E-commerce Catalog
Kewei Cheng | Xian Li | Zhengyang Wang | Chenwei Zhang | Binxuan Huang | Yifan Ethan Xu | Xin Luna Dong | Yizhou Sun
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 5: Industry Track)

Product catalogs, conceptually in the form of text-rich tables, are self-reported by individual retailers and thus inevitably contain noisy facts. Verifying such textual attributes in product catalogs is essential to improve their reliability. However, popular methods for processing free-text content, such as pre-trained language models, are not particularly effective on structured tabular data since they are typically trained on free-form natural language texts. In this paper, we present Tab-Cleaner, a model designed to handle error detection over text-rich tabular data following a pre-training / fine-tuning paradigm. We train Tab-Cleaner on a real-world Amazon Product Catalog table w.r.t millions of products and show improvements over state-of-the-art methods by 16\% on PR AUC over attribute applicability classification task and by 11\% on PR AUC over attribute value validation task.

2022

pdf bib
HiURE: Hierarchical Exemplar Contrastive Learning for Unsupervised Relation Extraction
Shuliang Liu | Xuming Hu | Chenwei Zhang | Shu’ang Li | Lijie Wen | Philip Yu
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Unsupervised relation extraction aims to extract the relationship between entities from natural language sentences without prior information on relational scope or distribution. Existing works either utilize self-supervised schemes to refine relational feature signals by iteratively leveraging adaptive clustering and classification that provoke gradual drift problems, or adopt instance-wise contrastive learning which unreasonably pushes apart those sentence pairs that are semantically similar. To overcome these defects, we propose a novel contrastive learning framework named HiURE, which has the capability to derive hierarchical signals from relational feature space using cross hierarchy attention and effectively optimize relation representation of sentences under exemplar-wise contrastive learning. Experimental results on two public datasets demonstrate the advanced effectiveness and robustness of HiURE on unsupervised relation extraction when compared with state-of-the-art models.

2021

pdf bib
Gradient Imitation Reinforcement Learning for Low Resource Relation Extraction
Xuming Hu | Chenwei Zhang | Yawen Yang | Xiaohe Li | Li Lin | Lijie Wen | Philip S. Yu
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Low-resource Relation Extraction (LRE) aims to extract relation facts from limited labeled corpora when human annotation is scarce. Existing works either utilize self-training scheme to generate pseudo labels that will cause the gradual drift problem, or leverage meta-learning scheme which does not solicit feedback explicitly. To alleviate selection bias due to the lack of feedback loops in existing LRE learning paradigms, we developed a Gradient Imitation Reinforcement Learning method to encourage pseudo label data to imitate the gradient descent direction on labeled data and bootstrap its optimization capability through trial and error. We also propose a framework called GradLRE, which handles two major scenarios in low-resource relation extraction. Besides the scenario where unlabeled data is sufficient, GradLRE handles the situation where no unlabeled data is available, by exploiting a contextualized augmentation method to generate data. Experimental results on two public datasets demonstrate the effectiveness of GradLRE on low resource relation extraction when comparing with baselines.

pdf bib
End-to-End Conversational Search for Online Shopping with Utterance Transfer
Liqiang Xiao | Jun Ma | Xin Luna Dong | Pascual Martínez-Gómez | Nasser Zalmout | Chenwei Zhang | Tong Zhao | Hao He | Yaohui Jin
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Successful conversational search systems can present natural, adaptive and interactive shopping experience for online shopping customers. However, building such systems from scratch faces real word challenges from both imperfect product schema/knowledge and lack of training dialog data. In this work we first propose ConvSearch, an end-to-end conversational search system that deeply combines the dialog system with search. It leverages the text profile to retrieve products, which is more robust against imperfect product schema/knowledge compared with using product attributes alone. We then address the lack of data challenges by proposing an utterance transfer approach that generates dialogue utterances by using existing dialog from other domains, and leveraging the search behavior data from e-commerce retailer. With utterance transfer, we introduce a new conversational search dataset for online shopping. Experiments show that our utterance transfer method can significantly improve the availability of training dialogue data without crowd-sourcing, and the conversational search system significantly outperformed the best tested baseline.

pdf bib
Semi-supervised Relation Extraction via Incremental Meta Self-Training
Xuming Hu | Chenwei Zhang | Fukun Ma | Chenyao Liu | Lijie Wen | Philip S. Yu
Findings of the Association for Computational Linguistics: EMNLP 2021

To alleviate human efforts from obtaining large-scale annotations, Semi-Supervised Relation Extraction methods aim to leverage unlabeled data in addition to learning from limited samples. Existing self-training methods suffer from the gradual drift problem, where noisy pseudo labels on unlabeled data are incorporated during training. To alleviate the noise in pseudo labels, we propose a method called MetaSRE, where a Relation Label Generation Network generates accurate quality assessment on pseudo labels by (meta) learning from the successful and failed attempts on Relation Classification Network as an additional meta-objective. To reduce the influence of noisy pseudo labels, MetaSRE adopts a pseudo label selection and exploitation scheme which assesses pseudo label quality on unlabeled samples and only exploits high-quality pseudo labels in a self-training fashion to incrementally augment labeled samples for both robustness and accuracy. Experimental results on two public datasets demonstrate the effectiveness of the proposed approach.

2020

pdf bib
Dynamic Semantic Matching and Aggregation Network for Few-shot Intent Detection
Hoang Nguyen | Chenwei Zhang | Congying Xia | Philip Yu
Findings of the Association for Computational Linguistics: EMNLP 2020

Few-shot Intent Detection is challenging due to the scarcity of available annotated utterances. Although recent works demonstrate that multi-level matching plays an important role in transferring learned knowledge from seen training classes to novel testing classes, they rely on a static similarity measure and overly fine-grained matching components. These limitations inhibit generalizing capability towards Generalized Few-shot Learning settings where both seen and novel classes are co-existent. In this paper, we propose a novel Semantic Matching and Aggregation Network where semantic components are distilled from utterances via multi-head self-attention with additional dynamic regularization constraints. These semantic components capture high-level information, resulting in more effective matching between instances. Our multi-perspective matching method provides a comprehensive matching measure to enhance representations of both labeled and unlabeled instances. We also propose a more challenging evaluation setting that considers classification on the joint all-class label space. Extensive experimental results demonstrate the effectiveness of our method. Our code and data are publicly available.

pdf bib
SelfORE: Self-supervised Relational Feature Learning for Open Relation Extraction
Xuming Hu | Lijie Wen | Yusong Xu | Chenwei Zhang | Philip Yu
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Open relation extraction is the task of extracting open-domain relation facts from natural language sentences. Existing works either utilize heuristics or distant-supervised annotations to train a supervised classifier over pre-defined relations, or adopt unsupervised methods with additional assumptions that have less discriminative power. In this work, we propose a self-supervised framework named SelfORE, which exploits weak, self-supervised signals by leveraging large pretrained language model for adaptive clustering on contextualized relational features, and bootstraps the self-supervised signals by improving contextualized features in relation classification. Experimental results on three datasets show the effectiveness and robustness of SelfORE on open-domain Relation Extraction when comparing with competitive baselines.

2019

pdf bib
Multi-grained Named Entity Recognition
Congying Xia | Chenwei Zhang | Tao Yang | Yaliang Li | Nan Du | Xian Wu | Wei Fan | Fenglong Ma | Philip Yu
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

This paper presents a novel framework, MGNER, for Multi-Grained Named Entity Recognition where multiple entities or entity mentions in a sentence could be non-overlapping or totally nested. Different from traditional approaches regarding NER as a sequential labeling task and annotate entities consecutively, MGNER detects and recognizes entities on multiple granularities: it is able to recognize named entities without explicitly assuming non-overlapping or totally nested structures. MGNER consists of a Detector that examines all possible word segments and a Classifier that categorizes entities. In addition, contextual information and a self-attention mechanism are utilized throughout the framework to improve the NER performance. Experimental results show that MGNER outperforms current state-of-the-art baselines up to 4.4% in terms of the F1 score among nested/non-overlapping NER tasks.

pdf bib
Joint Slot Filling and Intent Detection via Capsule Neural Networks
Chenwei Zhang | Yaliang Li | Nan Du | Wei Fan | Philip Yu
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Being able to recognize words as slots and detect the intent of an utterance has been a keen issue in natural language understanding. The existing works either treat slot filling and intent detection separately in a pipeline manner, or adopt joint models which sequentially label slots while summarizing the utterance-level intent without explicitly preserving the hierarchical relationship among words, slots, and intents. To exploit the semantic hierarchy for effective modeling, we propose a capsule-based neural network model which accomplishes slot filling and intent detection via a dynamic routing-by-agreement schema. A re-routing schema is proposed to further synergize the slot filling performance using the inferred intent representation. Experiments on two real-world datasets show the effectiveness of our model when compared with other alternative model architectures, as well as existing natural language understanding services.

2018

pdf bib
Zero-shot User Intent Detection via Capsule Neural Networks
Congying Xia | Chenwei Zhang | Xiaohui Yan | Yi Chang | Philip Yu
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

User intent detection plays a critical role in question-answering and dialog systems. Most previous works treat intent detection as a classification problem where utterances are labeled with predefined intents. However, it is labor-intensive and time-consuming to label users’ utterances as intents are diversely expressed and novel intents will continually be involved. Instead, we study the zero-shot intent detection problem, which aims to detect emerging user intents where no labeled utterances are currently available. We propose two capsule-based architectures: IntentCapsNet that extracts semantic features from utterances and aggregates them to discriminate existing intents, and IntentCapsNet-ZSL which gives IntentCapsNet the zero-shot learning ability to discriminate emerging intents via knowledge transfer from existing intents. Experiments on two real-world datasets show that our model not only can better discriminate diversely expressed existing intents, but is also able to discriminate emerging intents when no labeled utterances are available.

2016

pdf bib
Discourse Relation Sense Classification Systems for CoNLL-2016 Shared Task
Ping Jian | Xiaohan She | Chenwei Zhang | Pengcheng Zhang | Jian Feng
Proceedings of the CoNLL-16 shared task