Chris van der Lee


2024

pdf bib
ReproHum: #0033-03: How Reproducible Are Fluency Ratings of Generated Text? A Reproduction of August et al. 2022
Emiel van Miltenburg | Anouck Braggaar | Nadine Braun | Martijn Goudbeek | Emiel Krahmer | Chris van der Lee | Steffen Pauws | Frédéric Tomas
Proceedings of the Fourth Workshop on Human Evaluation of NLP Systems (HumEval) @ LREC-COLING 2024

In earlier work, August et al. (2022) evaluated three different Natural Language Generation systems on their ability to generate fluent, relevant, and factual scientific definitions. As part of the ReproHum project (Belz et al., 2023), we carried out a partial reproduction study of their human evaluation procedure, focusing on human fluency ratings. Following the standardised ReproHum procedure, our reproduction study follows the original study as closely as possible, with two raters providing 300 ratings each. In addition to this, we carried out a second study where we collected ratings from eight additional raters and analysed the variability of the ratings. We successfully reproduced the inferential statistics from the original study (i.e. the same hypotheses were supported), albeit with a lower inter-annotator agreement. The remainder of our paper shows significant variation between different raters, raising questions about what it really means to reproduce human evaluation studies.

2023

pdf bib
Missing Information, Unresponsive Authors, Experimental Flaws: The Impossibility of Assessing the Reproducibility of Previous Human Evaluations in NLP
Anya Belz | Craig Thomson | Ehud Reiter | Gavin Abercrombie | Jose M. Alonso-Moral | Mohammad Arvan | Anouck Braggaar | Mark Cieliebak | Elizabeth Clark | Kees van Deemter | Tanvi Dinkar | Ondřej Dušek | Steffen Eger | Qixiang Fang | Mingqi Gao | Albert Gatt | Dimitra Gkatzia | Javier González-Corbelle | Dirk Hovy | Manuela Hürlimann | Takumi Ito | John D. Kelleher | Filip Klubicka | Emiel Krahmer | Huiyuan Lai | Chris van der Lee | Yiru Li | Saad Mahamood | Margot Mieskes | Emiel van Miltenburg | Pablo Mosteiro | Malvina Nissim | Natalie Parde | Ondřej Plátek | Verena Rieser | Jie Ruan | Joel Tetreault | Antonio Toral | Xiaojun Wan | Leo Wanner | Lewis Watson | Diyi Yang
Proceedings of the Fourth Workshop on Insights from Negative Results in NLP

We report our efforts in identifying a set of previous human evaluations in NLP that would be suitable for a coordinated study examining what makes human evaluations in NLP more/less reproducible. We present our results and findings, which include that just 13% of papers had (i) sufficiently low barriers to reproduction, and (ii) enough obtainable information, to be considered for reproduction, and that all but one of the experiments we selected for reproduction was discovered to have flaws that made the meaningfulness of conducting a reproduction questionable. As a result, we had to change our coordinated study design from a reproduce approach to a standardise-then-reproduce-twice approach. Our overall (negative) finding that the great majority of human evaluations in NLP is not repeatable and/or not reproducible and/or too flawed to justify reproduction, paints a dire picture, but presents an opportunity for a rethink about how to design and report human evaluations in NLP.

pdf bib
How reproducible is best-worst scaling for human evaluation? A reproduction of ‘Data-to-text Generation with Macro Planning’
Emiel van Miltenburg | Anouck Braggaar | Nadine Braun | Debby Damen | Martijn Goudbeek | Chris van der Lee | Frédéric Tomas | Emiel Krahmer
Proceedings of the 3rd Workshop on Human Evaluation of NLP Systems

This paper is part of the larger ReproHum project, where different teams of researchers aim to reproduce published experiments from the NLP literature. Specifically, ReproHum focuses on the reproducibility of human evaluation studies, where participants indicate the quality of different outputs of Natural Language Generation (NLG) systems. This is necessary because without reproduction studies, we do not know how reliable earlier results are. This paper aims to reproduce the second human evaluation study of Puduppully & Lapata (2021), while another lab is attempting to do the same. This experiment uses best-worst scaling to determine the relative performance of different NLG systems. We found that the worst performing system in the original study is now in fact the best performing system across the board. This means that we cannot fully reproduce the original results. We also carry out alternative analyses of the data, and discuss how our results may be combined with the other reproduction study that is carried out in parallel with this paper.

pdf bib
Neural Data-to-Text Generation Based on Small Datasets: Comparing the Added Value of Two Semi-Supervised Learning Approaches on Top of a Large Language Model
Chris van der Lee | Thiago Castro Ferreira | Chris Emmery | Travis J. Wiltshire | Emiel Krahmer
Computational Linguistics, Volume 49, Issue 3 - September 2023

This study discusses the effect of semi-supervised learning in combination with pretrained language models for data-to-text generation. It is not known whether semi-supervised learning is still helpful when a large-scale language model is also supplemented. This study aims to answer this question by comparing a data-to-text system only supplemented with a language model, to two data-to-text systems that are additionally enriched by a data augmentation or a pseudo-labeling semi-supervised learning approach. Results show that semi-supervised learning results in higher scores on diversity metrics. In terms of output quality, extending the training set of a data-to-text system with a language model using the pseudo-labeling approach did increase text quality scores, but the data augmentation approach yielded similar scores to the system without training set extension. These results indicate that semi-supervised learning approaches can bolster output quality and diversity, even when a language model is also present.

2022

pdf bib
A reproduction study of methods for evaluating dialogue system output: Replicating Santhanam and Shaikh (2019)
Anouck Braggaar | Frédéric Tomas | Peter Blomsma | Saar Hommes | Nadine Braun | Emiel van Miltenburg | Chris van der Lee | Martijn Goudbeek | Emiel Krahmer
Proceedings of the 15th International Conference on Natural Language Generation: Generation Challenges

In this paper, we describe our reproduction ef- fort of the paper: Towards Best Experiment Design for Evaluating Dialogue System Output by Santhanam and Shaikh (2019) for the 2022 ReproGen shared task. We aim to produce the same results, using different human evaluators, and a different implementation of the automatic metrics used in the original paper. Although overall the study posed some challenges to re- produce (e.g. difficulties with reproduction of automatic metrics and statistics), in the end we did find that the results generally replicate the findings of Santhanam and Shaikh (2019) and seem to follow similar trends.

2021

pdf bib
Preregistering NLP research
Emiel van Miltenburg | Chris van der Lee | Emiel Krahmer
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Preregistration refers to the practice of specifying what you are going to do, and what you expect to find in your study, before carrying out the study. This practice is increasingly common in medicine and psychology, but is rarely discussed in NLP. This paper discusses preregistration in more detail, explores how NLP researchers could preregister their work, and presents several preregistration questions for different kinds of studies. Finally, we argue in favour of registered reports, which could provide firmer grounds for slow science in NLP research. The goal of this paper is to elicit a discussion in the NLP community, which we hope to synthesise into a general NLP preregistration form in future research.

2020

pdf bib
The CACAPO Dataset: A Multilingual, Multi-Domain Dataset for Neural Pipeline and End-to-End Data-to-Text Generation
Chris van der Lee | Chris Emmery | Sander Wubben | Emiel Krahmer
Proceedings of the 13th International Conference on Natural Language Generation

This paper describes the CACAPO dataset, built for training both neural pipeline and end-to-end data-to-text language generation systems. The dataset is multilingual (Dutch and English), and contains almost 10,000 sentences from human-written news texts in the sports, weather, stocks, and incidents domain, together with aligned attribute-value paired data. The dataset is unique in that the linguistic variation and indirect ways of expressing data in these texts reflect the challenges of real world NLG tasks.

pdf bib
Evaluation rules! On the use of grammars and rule-based systems for NLG evaluation
Emiel van Miltenburg | Chris van der Lee | Thiago Castro-Ferreira | Emiel Krahmer
Proceedings of the 1st Workshop on Evaluating NLG Evaluation

NLG researchers often use uncontrolled corpora to train and evaluate their systems, using textual similarity metrics, such as BLEU. This position paper argues in favour of two alternative evaluation strategies, using grammars or rule-based systems. These strategies are particularly useful to identify the strengths and weaknesses of different systems. We contrast our proposals with the (extended) WebNLG dataset, which is revealed to have a skewed distribution of predicates. We predict that this distribution affects the quality of the predictions for systems trained on this data. However, this hypothesis can only be thoroughly tested (without any confounds) once we are able to systematically manipulate the skewness of the data, using a rule-based approach.

pdf bib
Proceedings of the 3rd International Workshop on Natural Language Generation from the Semantic Web (WebNLG+)
Thiago Castro Ferreira | Claire Gardent | Nikolai Ilinykh | Chris van der Lee | Simon Mille | Diego Moussallem | Anastasia Shimorina
Proceedings of the 3rd International Workshop on Natural Language Generation from the Semantic Web (WebNLG+)

pdf bib
A General Benchmarking Framework for Text Generation
Diego Moussallem | Paramjot Kaur | Thiago Ferreira | Chris van der Lee | Anastasia Shimorina | Felix Conrads | Michael Röder | René Speck | Claire Gardent | Simon Mille | Nikolai Ilinykh | Axel-Cyrille Ngonga Ngomo
Proceedings of the 3rd International Workshop on Natural Language Generation from the Semantic Web (WebNLG+)

The RDF-to-text task has recently gained substantial attention due to the continuous growth of RDF knowledge graphs in number and size. Recent studies have focused on systematically comparing RDF-to-text approaches on benchmarking datasets such as WebNLG. Although some evaluation tools have already been proposed for text generation, none of the existing solutions abides by the Findability, Accessibility, Interoperability, and Reusability (FAIR) principles and involves RDF data for the knowledge extraction task. In this paper, we present BENG, a FAIR benchmarking platform for Natural Language Generation (NLG) and Knowledge Extraction systems with focus on RDF data. BENG builds upon the successful benchmarking platform GERBIL, is opensource and is publicly available along with the data it contains.

pdf bib
The 2020 Bilingual, Bi-Directional WebNLG+ Shared Task: Overview and Evaluation Results (WebNLG+ 2020)
Thiago Castro Ferreira | Claire Gardent | Nikolai Ilinykh | Chris van der Lee | Simon Mille | Diego Moussallem | Anastasia Shimorina
Proceedings of the 3rd International Workshop on Natural Language Generation from the Semantic Web (WebNLG+)

WebNLG+ offers two challenges: (i) mapping sets of RDF triples to English or Russian text (generation) and (ii) converting English or Russian text to sets of RDF triples (semantic parsing). Compared to the eponymous WebNLG challenge, WebNLG+ provides an extended dataset that enable the training, evaluation, and comparison of microplanners and semantic parsers. In this paper, we present the results of the generation and semantic parsing task for both English and Russian and provide a brief description of the participating systems.

2019

pdf bib
Best practices for the human evaluation of automatically generated text
Chris van der Lee | Albert Gatt | Emiel van Miltenburg | Sander Wubben | Emiel Krahmer
Proceedings of the 12th International Conference on Natural Language Generation

Currently, there is little agreement as to how Natural Language Generation (NLG) systems should be evaluated. While there is some agreement regarding automatic metrics, there is a high degree of variation in the way that human evaluation is carried out. This paper provides an overview of how human evaluation is currently conducted, and presents a set of best practices, grounded in the literature. With this paper, we hope to contribute to the quality and consistency of human evaluations in NLG.

pdf bib
A Personalized Data-to-Text Support Tool for Cancer Patients
Saar Hommes | Chris van der Lee | Felix Clouth | Jeroen Vermunt | Xander Verbeek | Emiel Krahmer
Proceedings of the 12th International Conference on Natural Language Generation

In this paper, we present a novel data-to-text system for cancer patients, providing information on quality of life implications after treatment, which can be embedded in the context of shared decision making. Currently, information on quality of life implications is often not discussed, partly because (until recently) data has been lacking. In our work, we rely on a newly developed prediction model, which assigns patients to scenarios. Furthermore, we use data-to-text techniques to explain these scenario-based predictions in personalized and understandable language. We highlight the possibilities of NLG for personalization, discuss ethical implications and also present the outcomes of a first evaluation with clinicians.

pdf bib
Neural data-to-text generation: A comparison between pipeline and end-to-end architectures
Thiago Castro Ferreira | Chris van der Lee | Emiel van Miltenburg | Emiel Krahmer
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Traditionally, most data-to-text applications have been designed using a modular pipeline architecture, in which non-linguistic input data is converted into natural language through several intermediate transformations. By contrast, recent neural models for data-to-text generation have been proposed as end-to-end approaches, where the non-linguistic input is rendered in natural language with much less explicit intermediate representations in between. This study introduces a systematic comparison between neural pipeline and end-to-end data-to-text approaches for the generation of text from RDF triples. Both architectures were implemented making use of the encoder-decoder Gated-Recurrent Units (GRU) and Transformer, two state-of-the art deep learning methods. Automatic and human evaluations together with a qualitative analysis suggest that having explicit intermediate steps in the generation process results in better texts than the ones generated by end-to-end approaches. Moreover, the pipeline models generalize better to unseen inputs. Data and code are publicly available.

pdf bib
Automatic identification of writers’ intentions: Comparing different methods for predicting relationship goals in online dating profile texts
Chris van der Lee | Tess van der Zanden | Emiel Krahmer | Maria Mos | Alexander Schouten
Proceedings of the 5th Workshop on Noisy User-generated Text (W-NUT 2019)

Psychologically motivated, lexicon-based text analysis methods such as LIWC (Pennebaker et al., 2015) have been criticized by computational linguists for their lack of adaptability, but they have not often been systematically compared with either human evaluations or machine learning approaches. The goal of the current study was to assess the effectiveness and predictive ability of LIWC on a relationship goal classification task. In this paper, we compared the outcomes of (1) LIWC, (2) machine learning, and (3) a human baseline. A newly collected corpus of online dating profile texts (a genre not explored before in the ACL anthology) was used, accompanied by the profile writers’ self-selected relationship goal (long-term versus date). These three approaches were tested by comparing their performance on identifying both the intended relationship goal and content-related text labels. Results show that LIWC and machine learning models correlate with human evaluations in terms of content-related labels. LIWC’s content-related labels corresponded more strongly to humans than those of the classifier. Moreover, all approaches were similarly accurate in predicting the relationship goal.

2018

pdf bib
Language Identification and Morphosyntactic Tagging: The Second VarDial Evaluation Campaign
Marcos Zampieri | Shervin Malmasi | Preslav Nakov | Ahmed Ali | Suwon Shon | James Glass | Yves Scherrer | Tanja Samardžić | Nikola Ljubešić | Jörg Tiedemann | Chris van der Lee | Stefan Grondelaers | Nelleke Oostdijk | Dirk Speelman | Antal van den Bosch | Ritesh Kumar | Bornini Lahiri | Mayank Jain
Proceedings of the Fifth Workshop on NLP for Similar Languages, Varieties and Dialects (VarDial 2018)

We present the results and the findings of the Second VarDial Evaluation Campaign on Natural Language Processing (NLP) for Similar Languages, Varieties and Dialects. The campaign was organized as part of the fifth edition of the VarDial workshop, collocated with COLING’2018. This year, the campaign included five shared tasks, including two task re-runs – Arabic Dialect Identification (ADI) and German Dialect Identification (GDI) –, and three new tasks – Morphosyntactic Tagging of Tweets (MTT), Discriminating between Dutch and Flemish in Subtitles (DFS), and Indo-Aryan Language Identification (ILI). A total of 24 teams submitted runs across the five shared tasks, and contributed 22 system description papers, which were included in the VarDial workshop proceedings and are referred to in this report.

pdf bib
Automated learning of templates for data-to-text generation: comparing rule-based, statistical and neural methods
Chris van der Lee | Emiel Krahmer | Sander Wubben
Proceedings of the 11th International Conference on Natural Language Generation

The current study investigated novel techniques and methods for trainable approaches to data-to-text generation. Neural Machine Translation was explored for the conversion from data to text as well as the addition of extra templatization steps of the data input and text output in the conversion process. Evaluation using BLEU did not find the Neural Machine Translation technique to perform any better compared to rule-based or Statistical Machine Translation, and the templatization method seemed to perform similarly or sometimes worse compared to direct data-to-text conversion. However, the human evaluation metrics indicated that Neural Machine Translation yielded the highest quality output and that the templatization method was able to increase text quality in multiple situations.

pdf bib
Template-based multilingual football reports generation using Wikidata as a knowledge base
Lorenzo Gatti | Chris van der Lee | Mariët Theune
Proceedings of the 11th International Conference on Natural Language Generation

This paper presents a new version of a football reports generation system called PASS. The original version generated Dutch text and relied on a limited hand-crafted knowledge base. We describe how, in a short amount of time, we extended PASS to produce English texts, exploiting machine translation and Wikidata as a large-scale source of multilingual knowledge.

pdf bib
Evaluating the text quality, human likeness and tailoring component of PASS: A Dutch data-to-text system for soccer
Chris van der Lee | Bart Verduijn | Emiel Krahmer | Sander Wubben
Proceedings of the 27th International Conference on Computational Linguistics

We present an evaluation of PASS, a data-to-text system that generates Dutch soccer reports from match statistics which are automatically tailored towards fans of one club or the other. The evaluation in this paper consists of two studies. An intrinsic human-based evaluation of the system’s output is described in the first study. In this study it was found that compared to human-written texts, computer-generated texts were rated slightly lower on style-related text components (fluency and clarity) and slightly higher in terms of the correctness of given information. Furthermore, results from the first study showed that tailoring was accurately recognized in most cases, and that participants struggled with correctly identifying whether a text was written by a human or computer. The second study investigated if tailoring affects perceived text quality, for which no results were garnered. This lack of results might be due to negative preconceptions about computer-generated texts which were found in the first study.

2017

pdf bib
Exploring Lexical and Syntactic Features for Language Variety Identification
Chris van der Lee | Antal van den Bosch
Proceedings of the Fourth Workshop on NLP for Similar Languages, Varieties and Dialects (VarDial)

We present a method to discriminate between texts written in either the Netherlandic or the Flemish variant of the Dutch language. The method draws on a feature bundle representing text statistics, syntactic features, and word n-grams. Text statistics include average word length and sentence length, while syntactic features include ratios of function words and part-of-speech n-grams. The effectiveness of the classifier was measured by classifying Dutch subtitles developed for either Dutch or Flemish television. Several machine learning algorithms were compared as well as feature combination methods in order to find the optimal generalization performance. A machine-learning meta classifier based on AdaBoost attained the best F-score of 0.92.

pdf bib
PASS: A Dutch data-to-text system for soccer, targeted towards specific audiences
Chris van der Lee | Emiel Krahmer | Sander Wubben
Proceedings of the 10th International Conference on Natural Language Generation

We present PASS, a data-to-text system that generates Dutch soccer reports from match statistics. One of the novel elements of PASS is the fact that the system produces corpus-based texts tailored towards fans of one club or the other, which can most prominently be observed in the tone of voice used in the reports. Furthermore, the system is open source and uses a modular design, which makes it relatively easy for people to add extensions. Human-based evaluation shows that people are generally positive towards PASS in regards to its clarity and fluency, and that the tailoring is accurately recognized in most cases.
Search