Christopher Potts


2024

pdf bib
ARES: An Automated Evaluation Framework for Retrieval-Augmented Generation Systems
Jon Saad-Falcon | Omar Khattab | Christopher Potts | Matei Zaharia
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Evaluating retrieval-augmented generation (RAG) systems traditionally relies on hand annotations for input queries, passages to retrieve, and responses to generate. We introduce ARES, an Automated RAG Evaluation System, for evaluating RAG systems along the dimensions of context relevance, answer faithfulness, and answer relevance. By creating its own synthetic training data, ARES finetunes lightweight LM judges to assess the quality of individual RAG components. To mitigate potential prediction errors, ARES utilizes a small set of human-annotated datapoints for prediction-powered inference (PPI). Across eight different knowledge-intensive tasks in KILT, SuperGLUE, and AIS, ARES accurately evaluates RAG systems while using only a few hundred human annotations during evaluation. Furthermore, ARES judges remain effective across domain shifts, proving accurate even after changing the type of queries and/or documents used in the evaluated RAG systems. We make our code and datasets publicly available on Github.

pdf bib
pyvene: A Library for Understanding and Improving PyTorch Models via Interventions
Zhengxuan Wu | Atticus Geiger | Aryaman Arora | Jing Huang | Zheng Wang | Noah Goodman | Christopher Manning | Christopher Potts
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 3: System Demonstrations)

Interventions on model-internal states are fundamental operations in many areas of AI, including model editing, steering, robustness, and interpretability. To facilitate such research, we introduce pyvene, an open-source Python library that supports customizable interventions on a range of different PyTorch modules. pyvene supports complex intervention schemes with an intuitive configuration format, and its interventions can be static or include trainable parameters. We show how pyvene provides a unified and extensible framework for performing interventions on neural models and sharing the intervened upon models with others. We illustrate the power of the library via interpretability analyses using causal abstraction and knowledge localization. We publish our library through Python Package Index (PyPI) and provide code, documentation, and tutorials at ‘https://github.com/stanfordnlp/pyvene‘.

pdf bib
RAVEL: Evaluating Interpretability Methods on Disentangling Language Model Representations
Jing Huang | Zhengxuan Wu | Christopher Potts | Mor Geva | Atticus Geiger
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Individual neurons participate in the representation of multiple high-level concepts. To what extent can different interpretability methods successfully disentangle these roles? To help address this question, we introduce RAVEL (Resolving Attribute-Value Entanglements in Language Models), a dataset that enables tightly controlled, quantitative comparisons between a variety of existing interpretability methods. We use the resulting conceptual framework to define the new method of Multi-task Distributed Alignment Search (MDAS), which allows us to find distributed representations satisfying multiple causal criteria. With Llama2-7B as the target language model, MDAS achieves state-of-the-art results on RAVEL, demonstrating the importance of going beyond neuron-level analyses to identify features distributed across activations. We release our benchmark at https://github.com/explanare/ravel.

pdf bib
I am a Strange Dataset: Metalinguistic Tests for Language Models
Tristan Thrush | Jared Moore | Miguel Monares | Christopher Potts | Douwe Kiela
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Statements involving metalinguistic self-reference (“This paper has six sections.”) are prevalent in many domains. Can large language models (LLMs) handle such language? In this paper, we present “I am a Strange Dataset”, a new dataset for addressing this question. There are two subtasks: generation and verification. In generation, models continue statements like “The penultimate word in this sentence is” (where a correct continuation is “is”). In verification, models judge the truth of statements like “The penultimate word in this sentence is sentence.” (false). We also provide minimally different metalinguistic non-self-reference examples to complement the main dataset by probing for whether models can handle metalinguistic language at all. The dataset is hand-crafted by experts and validated by non-expert annotators. We test a variety of open-source LLMs (7B to 70B parameters) as well as closed-source LLMs through APIs. All models perform close to chance across both subtasks and even on the non-self-referential metalinguistic control data, though we find some steady improvement with model scale. GPT 4 is the only model to consistently do significantly better than chance, and it is still only in the 60% range, while our untrained human annotators score well in the 89-93% range. The dataset and evaluation toolkit are available at https://github.com/TristanThrush/i-am-a-strange-dataset

pdf bib
CausalGym: Benchmarking causal interpretability methods on linguistic tasks
Aryaman Arora | Dan Jurafsky | Christopher Potts
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Language models (LMs) have proven to be powerful tools for psycholinguistic research, but most prior work has focused on purely behavioural measures (e.g., surprisal comparisons). At the same time, research in model interpretability has begun to illuminate the abstract causal mechanisms shaping LM behavior. To help bring these strands of research closer together, we introduce CausalGym. We adapt and expand the SyntaxGym suite of tasks to benchmark the ability of interpretability methods to causally affect model behaviour. To illustrate how CausalGym can be used, we study the pythia models (14M–6.9B) and assess the causal efficacy of a wide range of interpretability methods, including linear probing and distributed alignment search (DAS). We find that DAS outperforms the other methods, and so we use it to study the learning trajectory of two difficult linguistic phenomena in pythia-1b: negative polarity item licensing and filler–gap dependencies. Our analysis shows that the mechanism implementing both of these tasks is learned in discrete stages, not gradually.

pdf bib
Mission: Impossible Language Models
Julie Kallini | Isabel Papadimitriou | Richard Futrell | Kyle Mahowald | Christopher Potts
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Chomsky and others have very directly claimed that large language models (LLMs) are equally capable of learning languages that are possible and impossible for humans to learn. However, there is very little published experimental evidence to support such a claim. Here, we develop a set of synthetic impossible languages of differing complexity, each designed by systematically altering English data with unnatural word orders and grammar rules. These languages lie on an impossibility continuum: at one end are languages that are inherently impossible, such as random and irreversible shuffles of English words, and on the other, languages that may not be intuitively impossible but are often considered so in linguistics, particularly those with rules based on counting word positions. We report on a wide range of evaluations to assess the capacity of GPT-2 small models to learn these uncontroversially impossible languages, and crucially, we perform these assessments at various stages throughout training to compare the learning process for each language. Our core finding is that GPT-2 struggles to learn impossible languages when compared to English as a control, challenging the core claim. More importantly, we hope our approach opens up a productive line of inquiry in which different LLM architectures are tested on a variety of impossible languages in an effort to learn more about how LLMs can be used as tools for these cognitive and typological investigations.

2023

pdf bib
Rigorously Assessing Natural Language Explanations of Neurons
Jing Huang | Atticus Geiger | Karel D’Oosterlinck | Zhengxuan Wu | Christopher Potts
Proceedings of the 6th BlackboxNLP Workshop: Analyzing and Interpreting Neural Networks for NLP

Natural language is an appealing medium for explaining how large language models process and store information, but evaluating the faithfulness of such explanations is challenging. To help address this, we develop two modes of evaluation for natural language explanations that claim individual neurons represent a concept in a text input. In the *observational mode*, we evaluate claims that a neuron a activates on all and only input strings that refer to a concept picked out by the proposed explanation E. In the *intervention mode*, we construe E as a claim that neuron a is a causal mediator of the concept denoted by E. We apply our framework to the GPT-4-generated explanations of GPT-2 XL neurons of Bills et al. (2023) and show that even the most confident explanations have high error rates and little to no causal efficacy. We close the paper by critically assessing whether natural language is a good choice for explanations and whether neurons are the best level of analysis.

pdf bib
Lexical Semantics with Large Language Models: A Case Study of English “break”
Erika Petersen | Christopher Potts
Findings of the Association for Computational Linguistics: EACL 2023

Large neural language models (LLMs) can be powerful tools for research in lexical semantics. We illustrate this potential using the English verb “break”, which has numerous senses and appears in a wide range of syntactic frames. We show that LLMs capture known sense distinctions and can be used to identify informative new sense combinations for further analysis. More generally, we argue that LLMs are aligned with lexical semantic theories in providing high-dimensional, contextually modulated representations, but LLMs’ lack of discrete features and dependence on usage-based data offer a genuinely new perspective on traditional problems in lexical semantics.

pdf bib
Moving Beyond Downstream Task Accuracy for Information Retrieval Benchmarking
Keshav Santhanam | Jon Saad-Falcon | Martin Franz | Omar Khattab | Avi Sil | Radu Florian | Md Arafat Sultan | Salim Roukos | Matei Zaharia | Christopher Potts
Findings of the Association for Computational Linguistics: ACL 2023

Neural information retrieval (IR) systems have progressed rapidly in recent years, in large part due to the release of publicly available benchmarking tasks. Unfortunately, some dimensions of this progress are illusory: the majority of the popular IR benchmarks today focus exclusively on downstream task accuracy and thus conceal the costs incurred by systems that trade away efficiency for quality. Latency, hardware cost, and other efficiency considerations are paramount to the deployment of IR systems in user-facing settings. We propose that IR benchmarks structure their evaluation methodology to include not only metrics of accuracy, but also efficiency considerations such as a query latency and the corresponding cost budget for a reproducible hardware setting. For the popular IR benchmarks MS MARCO and XOR-TyDi, we show how the best choice of IR system varies according to how these efficiency considerations are chosen and weighed. We hope that future benchmarks will adopt these guidelines toward more holistic IR evaluation.

pdf bib
Inducing Character-level Structure in Subword-based Language Models with Type-level Interchange Intervention Training
Jing Huang | Zhengxuan Wu | Kyle Mahowald | Christopher Potts
Findings of the Association for Computational Linguistics: ACL 2023

Language tasks involving character-level manipulations (e.g., spelling corrections, arithmetic operations, word games) are challenging for models operating on subword units. To address this, we develop a causal intervention framework to learn robust and interpretable character representations inside subword-based language models. Our method treats each character as a typed variable in a causal model and learns such causal structures by adapting the interchange intervention training method of Geiger et al. (2021). We additionally introduce a suite of character-level tasks that systematically vary in their dependence on meaning and sequence-level context. While character-level models still perform best on purely form-based tasks like string reversal, our method outperforms character-level models on more complex tasks that blend form, meaning, and context, such as spelling correction in context and word search games. Compared with standard subword-based models, our approach also significantly improves robustness on unseen token sequences and leads to human-interpretable internal representations of characters.

pdf bib
BioDEX: Large-Scale Biomedical Adverse Drug Event Extraction for Real-World Pharmacovigilance
Karel D’Oosterlinck | François Remy | Johannes Deleu | Thomas Demeester | Chris Develder | Klim Zaporojets | Aneiss Ghodsi | Simon Ellershaw | Jack Collins | Christopher Potts
Findings of the Association for Computational Linguistics: EMNLP 2023

Timely and accurate extraction of Adverse Drug Events (ADE) from biomedical literature is paramount for public safety, but involves slow and costly manual labor. We set out to improve drug safety monitoring (pharmacovigilance, PV) through the use of Natural Language Processing (NLP). We introduce BioDEX, a large-scale resource for Biomedical adverse Drug Event eXtraction, rooted in the historical output of drug safety reporting in the U.S. BioDEX consists of 65k abstracts and 19k full-text biomedical papers with 256k associated document-level safety reports created by medical experts. The core features of these reports include the reported weight, age, and biological sex of a patient, a set of drugs taken by the patient, the drug dosages, the reactions experienced, and whether the reaction was life threatening. In this work, we consider the task of predicting the core information of the report given its originating paper. We estimate human performance to be 72.0% F1, whereas our best model achieves 59.1% F1 (62.3 validation), indicating significant headroom. We also begin to explore ways in which these models could help professional PV reviewers. Our code and data are available at https://github.com/KarelDO/BioDEX.

pdf bib
ReCOGS: How Incidental Details of a Logical Form Overshadow an Evaluation of Semantic Interpretation
Zhengxuan Wu | Christopher D. Manning | Christopher Potts
Transactions of the Association for Computational Linguistics, Volume 11

Compositional generalization benchmarks for semantic parsing seek to assess whether models can accurately compute meanings for novel sentences, but operationalize this in terms of logical form (LF) prediction. This raises the concern that semantically irrelevant details of the chosen LFs could shape model performance. We argue that this concern is realized for the COGS benchmark (Kim and Linzen, 2020). COGS poses generalization splits that appear impossible for present-day models, which could be taken as an indictment of those models. However, we show that the negative results trace to incidental features of COGS LFs. Converting these LFs to semantically equivalent ones and factoring out capabilities unrelated to semantic interpretation, we find that even baseline models get traction. A recent variable-free translation of COGS LFs suggests similar conclusions, but we observe this format is not semantically equivalent; it is incapable of accurately representing some COGS meanings. These findings inform our proposal for ReCOGS, a modified version of COGS that comes closer to assessing the target semantic capabilities while remaining very challenging. Overall, our results reaffirm the importance of compositional generalization and careful benchmark task design.

pdf bib
UDAPDR: Unsupervised Domain Adaptation via LLM Prompting and Distillation of Rerankers
Jon Saad-Falcon | Omar Khattab | Keshav Santhanam | Radu Florian | Martin Franz | Salim Roukos | Avirup Sil | Md Sultan | Christopher Potts
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Many information retrieval tasks require large labeled datasets for fine-tuning. However, such datasets are often unavailable, and their utility for real-world applications can diminish quickly due to domain shifts. To address this challenge, we develop and motivate a method for using large language models (LLMs) to generate large numbers of synthetic queries cheaply. The method begins by generating a small number of synthetic queries using an expensive LLM. After that, a much less expensive one is used to create large numbers of synthetic queries, which are used to fine-tune a family of reranker models. These rerankers are then distilled into a single efficient retriever for use in the target domain. We show that this technique boosts zero-shot accuracy in long-tail domains and achieves substantially lower latency than standard reranking methods.

pdf bib
MQuAKE: Assessing Knowledge Editing in Language Models via Multi-Hop Questions
Zexuan Zhong | Zhengxuan Wu | Christopher Manning | Christopher Potts | Danqi Chen
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

The information stored in large language models (LLMs) falls out of date quickly, and retraining from scratch is often not an option. This has recently given rise to a range of techniques for injecting new facts through updating model weights. Current evaluation paradigms are extremely limited, mainly validating the recall of edited facts, but changing one fact should cause rippling changes to the model’s related beliefs. If we edit the UK Prime Minister to now be Rishi Sunak, then we should get a different answer to Who is married to the British Prime Minister? In this work, we present a benchmark MQuAKE (Multi-hop Question Answering for Knowledge Editing) comprising multi-hop questions that assess whether edited models correctly answer questions where the answer should change as an entailed consequence of edited facts. While we find that current knowledge-editing approaches can recall edited facts accurately, they fail catastrophically on the constructed multi-hop questions. We thus propose a simple memory-based approach, MeLLo, which stores all edited facts externally while prompting the language model iteratively to generate answers that are consistent with the edited facts. While MQuAKE remains challenging, we show that MeLLo scales well with LLMs (up to 175B) and outperforms previous model editors by a large margin.

pdf bib
Multi-teacher Distillation for Multilingual Spelling Correction
Jingfen Zhang | Xuan Guo | Sravan Bodapati | Christopher Potts
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing: Industry Track

Accurate spelling correction is a critical step in modern search interfaces, especially in an era of mobile devices and speech-to-text interfaces. For services that are deployed around the world, this poses a significant challenge for multilingual NLP: spelling errors need to be caught and corrected in all languages, and even in queries that use multiple languages. In this paper, we tackle this challenge using multi-teacher distillation. On our approach, a monolingual teacher model is trained for each language/locale, and these individual models are distilled into a single multilingual student model intended to serve all languages/locales. In experiments using open-source data as well as customer data from a worldwide search service, we show that this leads to highly effective spelling correction models that can meet the tight latency requirements of deployed services.

pdf bib
Detecting Contradictory COVID-19 Drug Efficacy Claims from Biomedical Literature
Daniel Sosa | Malavika Suresh | Christopher Potts | Russ Altman
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

The COVID-19 pandemic created a deluge of questionable and contradictory scientific claims about drug efficacy – an “infodemic” with lasting consequences for science and society. In this work, we argue that NLP models can help domain experts distill and understand the literature in this complex, high-stakes area. Our task is to automatically identify contradictory claims about COVID-19 drug efficacy. We frame this as a natural language inference problem and offer a new NLI dataset created by domain experts. The NLI framing allows us to create curricula combining existing datasets and our own. The resulting models are useful investigative tools. We provide a case study of how these models help a domain expert summarize and assess evidence concerning remdisivir and hydroxychloroquine.

pdf bib
ScoNe: Benchmarking Negation Reasoning in Language Models With Fine-Tuning and In-Context Learning
Jingyuan S. She | Christopher Potts | Samuel R. Bowman | Atticus Geiger
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

A number of recent benchmarks seek to assess how well models handle natural language negation. However, these benchmarks lack the controlled example paradigms that would allow us to infer whether a model had truly learned how negation morphemes semantically scope. To fill these analytical gaps, we present the Scoped Negation NLI (ScoNe-NLI) benchmark, which contains contrast sets of six examples with up to two negations where either zero, one, or both negative morphemes affect the NLI label. We use ScoNe-NLI to assess fine-tuning and in-context learning strategies. We find that RoBERTa and DeBERTa models solve ScoNe-NLI after many shot fine-tuning. For in-context learning, we test the latest InstructGPT models and find that most prompt strategies are not successful, including those using step-by-step reasoning. To better understand this result, we extend ScoNe with ScoNe-NLG, a sentence completion test set that embeds negation reasoning in short narratives. Here, InstructGPT is successful, which reveals the model can correctly reason about negation, but struggles to do so on NLI examples outside of its core pretraining regime.

pdf bib
CAW-coref: Conjunction-Aware Word-level Coreference Resolution
Karel D’Oosterlinck | Semere Kiros Bitew | Brandon Papineau | Christopher Potts | Thomas Demeester | Chris Develder
Proceedings of The Sixth Workshop on Computational Models of Reference, Anaphora and Coreference (CRAC 2023)

2022

pdf bib
Concadia: Towards Image-Based Text Generation with a Purpose
Elisa Kreiss | Fei Fang | Noah Goodman | Christopher Potts
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Current deep learning models often achieve excellent results on benchmark image-to-text datasets but fail to generate texts that are useful in practice. We argue that to close this gap, it is vital to distinguish descriptions from captions based on their distinct communicative roles. Descriptions focus on visual features and are meant to replace an image (often to increase accessibility), whereas captions appear alongside an image to supply additional information. To motivate this distinction and help people put it into practice, we introduce the publicly available Wikipedia-based dataset Concadia consisting of 96,918 images with corresponding English-language descriptions, captions, and surrounding context. Using insights from Concadia, models trained on it, and a preregistered human-subjects experiment with human- and model-generated texts, we characterize the commonalities and differences between descriptions and captions. In addition, we show that, for generating both descriptions and captions, it is useful to augment image-to-text models with representations of the textual context in which the image appeared.

pdf bib
Context Matters for Image Descriptions for Accessibility: Challenges for Referenceless Evaluation Metrics
Elisa Kreiss | Cynthia Bennett | Shayan Hooshmand | Eric Zelikman | Meredith Ringel Morris | Christopher Potts
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Few images on the Web receive alt-text descriptions that would make them accessible to blind and low vision (BLV) users. Image-based NLG systems have progressed to the point where they can begin to address this persistent societal problem, but these systems will not be fully successful unless we evaluate them on metrics that guide their development correctly. Here, we argue against current referenceless metrics – those that don’t rely on human-generated ground-truth descriptions – on the grounds that they do not align with the needs of BLV users. The fundamental shortcoming of these metrics is that they do not take context into account, whereas contextual information is highly valued by BLV users. To substantiate these claims, we present a study with BLV participants who rated descriptions along a variety of dimensions. An in-depth analysis reveals that the lack of context-awareness makes current referenceless metrics inadequate for advancing image accessibility. As a proof-of-concept, we provide a contextual version of the referenceless metric CLIPScore which begins to address the disconnect to the BLV data.

pdf bib
Systematicity in GPT-3’s Interpretation of Novel English Noun Compounds
Siyan Li | Riley Carlson | Christopher Potts
Findings of the Association for Computational Linguistics: EMNLP 2022

Levin et al. (2019) show experimentally that the interpretations of novel English noun compounds (e.g., stew skillet), while not fully compositional, are highly predictable based on whether the modifier and head refer to artifacts or natural kinds. Is the large language model GPT-3 governed by the same interpretive principles? To address this question, we first compare Levin et al.’s experimental data with GPT-3 generations, finding a high degree of similarity. However, this evidence is consistent with GPT-3 reasoning only about specific lexical items rather than the more abstract conceptual categories of Levin et al.’s theory. To probe more deeply, we construct prompts that require the relevant kind of conceptual reasoning. Here, we fail to find convincing evidence that GPT-3 is reasoning about more than just individual lexical items. These results highlight the importance of controlling for low-level distributional regularities when assessing whether a large language model latently encodes a deeper theory.

pdf bib
ColBERTv2: Effective and Efficient Retrieval via Lightweight Late Interaction
Keshav Santhanam | Omar Khattab | Jon Saad-Falcon | Christopher Potts | Matei Zaharia
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Neural information retrieval (IR) has greatly advanced search and other knowledge-intensive language tasks. While many neural IR methods encode queries and documents into single-vector representations, late interaction models produce multi-vector representations at the granularity of each token and decompose relevance modeling into scalable token-level computations. This decomposition has been shown to make late interaction more effective, but it inflates the space footprint of these models by an order of magnitude. In this work, we introduce ColBERTv2, a retriever that couples an aggressive residual compression mechanism with a denoised supervision strategy to simultaneously improve the quality and space footprint of late interaction. We evaluate ColBERTv2 across a wide range of benchmarks, establishing state-of-the-art quality within and outside the training domain while reducing the space footprint of late interaction models by 6–10x.

pdf bib
Causal Distillation for Language Models
Zhengxuan Wu | Atticus Geiger | Joshua Rozner | Elisa Kreiss | Hanson Lu | Thomas Icard | Christopher Potts | Noah Goodman
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Distillation efforts have led to language models that are more compact and efficient without serious drops in performance. The standard approach to distillation trains a student model against two objectives: a task-specific objective (e.g., language modeling) and an imitation objective that encourages the hidden states of the student model to be similar to those of the larger teacher model. In this paper, we show that it is beneficial to augment distillation with a third objective that encourages the student to imitate the causal dynamics of the teacher through a distillation interchange intervention training objective (DIITO). DIITO pushes the student model to become a causal abstraction of the teacher model – a faithful model with simpler causal structure. DIITO is fully differentiable, easily implemented, and combines flexibly with other objectives. Compared against standard distillation with the same setting, DIITO results in lower perplexity on the WikiText-103M corpus (masked language modeling) and marked improvements on the GLUE benchmark (natural language understanding), SQuAD (question answering), and CoNLL-2003 (named entity recognition).

pdf bib
Identifying the Limits of Cross-Domain Knowledge Transfer for Pretrained Models
Zhengxuan Wu | Nelson F. Liu | Christopher Potts
Proceedings of the 7th Workshop on Representation Learning for NLP

There is growing evidence that pretrained language models improve task-specific fine-tuning even where the task examples are radically different from those seen in training. We study an extreme case of transfer learning by providing a systematic exploration of how much transfer occurs when models are denied any information about word identity via random scrambling. In four classification tasks and two sequence labeling tasks, we evaluate LSTMs using GloVe embeddings, BERT, and baseline models. Among these models, we find that only BERT shows high rates of transfer into our scrambled domains, and for classification but not sequence labeling tasks. Our analyses seek to explain why transfer succeeds for some tasks but not others, to isolate the separate contributions of pretraining versus fine-tuning, to show that the fine-tuning process is not merely learning to unscramble the scrambled inputs, and to quantify the role of word frequency. Furthermore, our results suggest that current benchmarks may overestimate the degree to which current models actually understand language.

2021

pdf bib
Dynabench: Rethinking Benchmarking in NLP
Douwe Kiela | Max Bartolo | Yixin Nie | Divyansh Kaushik | Atticus Geiger | Zhengxuan Wu | Bertie Vidgen | Grusha Prasad | Amanpreet Singh | Pratik Ringshia | Zhiyi Ma | Tristan Thrush | Sebastian Riedel | Zeerak Waseem | Pontus Stenetorp | Robin Jia | Mohit Bansal | Christopher Potts | Adina Williams
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

We introduce Dynabench, an open-source platform for dynamic dataset creation and model benchmarking. Dynabench runs in a web browser and supports human-and-model-in-the-loop dataset creation: annotators seek to create examples that a target model will misclassify, but that another person will not. In this paper, we argue that Dynabench addresses a critical need in our community: contemporary models quickly achieve outstanding performance on benchmark tasks but nonetheless fail on simple challenge examples and falter in real-world scenarios. With Dynabench, dataset creation, model development, and model assessment can directly inform each other, leading to more robust and informative benchmarks. We report on four initial NLP tasks, illustrating these concepts and highlighting the promise of the platform, and address potential objections to dynamic benchmarking as a new standard for the field.

pdf bib
Relevance-guided Supervision for OpenQA with ColBERT
Omar Khattab | Christopher Potts | Matei Zaharia
Transactions of the Association for Computational Linguistics, Volume 9

Systems for Open-Domain Question Answering (OpenQA) generally depend on a retriever for finding candidate passages in a large corpus and a reader for extracting answers from those passages. In much recent work, the retriever is a learned component that uses coarse-grained vector representations of questions and passages. We argue that this modeling choice is insufficiently expressive for dealing with the complexity of natural language questions. To address this, we define ColBERT-QA, which adapts the scalable neural retrieval model ColBERT to OpenQA. ColBERT creates fine-grained interactions between questions and passages. We propose an efficient weak supervision strategy that iteratively uses ColBERT to create its own training data. This greatly improves OpenQA retrieval on Natural Questions, SQuAD, and TriviaQA, and the resulting system attains state-of-the-art extractive OpenQA performance on all three datasets.

pdf bib
DynaSent: A Dynamic Benchmark for Sentiment Analysis
Christopher Potts | Zhengxuan Wu | Atticus Geiger | Douwe Kiela
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

We introduce DynaSent (‘Dynamic Sentiment’), a new English-language benchmark task for ternary (positive/negative/neutral) sentiment analysis. DynaSent combines naturally occurring sentences with sentences created using the open-source Dynabench Platform, which facilities human-and-model-in-the-loop dataset creation. DynaSent has a total of 121,634 sentences, each validated by five crowdworkers, and its development and test splits are designed to produce chance performance for even the best models we have been able to develop; when future models solve this task, we will use them to create DynaSent version 2, continuing the dynamic evolution of this benchmark. Here, we report on the dataset creation effort, focusing on the steps we took to increase quality and reduce artifacts. We also present evidence that DynaSent’s Neutral category is more coherent than the comparable category in other benchmarks, and we motivate training models from scratch for each round over successive fine-tuning.

2020

pdf bib
Pragmatic Issue-Sensitive Image Captioning
Allen Nie | Reuben Cohn-Gordon | Christopher Potts
Findings of the Association for Computational Linguistics: EMNLP 2020

Image captioning systems need to produce texts that are not only true but also relevant in that they are properly aligned with the current issues. For instance, in a newspaper article about a sports event, a caption that not only identifies the player in a picture but also comments on their ethnicity could create unwanted reader reactions. To address this, we propose Issue-Sensitive Image Captioning (ISIC). In ISIC, the captioner is given a target image and an issue, which is a set of images partitioned in a way that specifies what information is relevant. For the sports article, we could construct a partition that places images into equivalence classes based on player position. To model this task, we use an extension of the Rational Speech Acts model. Our extension is built on top of state-of-the-art pretrained neural image captioners and explicitly uses image partitions to control caption generation. In both automatic and human evaluations, we show that these models generate captions that are descriptive and issue-sensitive. Finally, we show how ISIC can complement and enrich the related task of Visual Question Answering.

pdf bib
Modeling Subjective Assessments of Guilt in Newspaper Crime Narratives
Elisa Kreiss | Zijian Wang | Christopher Potts
Proceedings of the 24th Conference on Computational Natural Language Learning

Crime reporting is a prevalent form of journalism with the power to shape public perceptions and social policies. How does the language of these reports act on readers? We seek to address this question with the SuspectGuilt Corpus of annotated crime stories from English-language newspapers in the U.S. For SuspectGuilt, annotators read short crime articles and provided text-level ratings concerning the guilt of the main suspect as well as span-level annotations indicating which parts of the story they felt most influenced their ratings. SuspectGuilt thus provides a rich picture of how linguistic choices affect subjective guilt judgments. We use SuspectGuilt to train and assess predictive models which validate the usefulness of the corpus, and show that these models benefit from genre pretraining and joint supervision from the text-level ratings and span-level annotations. Such models might be used as tools for understanding the societal effects of crime reporting.

pdf bib
Neural Natural Language Inference Models Partially Embed Theories of Lexical Entailment and Negation
Atticus Geiger | Kyle Richardson | Christopher Potts
Proceedings of the Third BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP

We address whether neural models for Natural Language Inference (NLI) can learn the compositional interactions between lexical entailment and negation, using four methods: the behavioral evaluation methods of (1) challenge test sets and (2) systematic generalization tasks, and the structural evaluation methods of (3) probes and (4) interventions. To facilitate this holistic evaluation, we present Monotonicity NLI (MoNLI), a new naturalistic dataset focused on lexical entailment and negation. In our behavioral evaluations, we find that models trained on general-purpose NLI datasets fail systematically on MoNLI examples containing negation, but that MoNLI fine-tuning addresses this failure. In our structural evaluations, we look for evidence that our top-performing BERT-based model has learned to implement the monotonicity algorithm behind MoNLI. Probes yield evidence consistent with this conclusion, and our intervention experiments bolster this, showing that the causal dynamics of the model mirror the causal dynamics of this algorithm on subsets of MoNLI. This suggests that the BERT model at least partially embeds a theory of lexical entailment and negation at an algorithmic level.

pdf bib
Communication-based Evaluation for Natural Language Generation
Benjamin Newman | Reuben Cohn-Gordon | Christopher Potts
Proceedings of the Society for Computation in Linguistics 2020

pdf bib
Data and Representation for Turkish Natural Language Inference
Emrah Budur | Rıza Özçelik | Tunga Gungor | Christopher Potts
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Large annotated datasets in NLP are overwhelmingly in English. This is an obstacle to progress in other languages. Unfortunately, obtaining new annotated resources for each task in each language would be prohibitively expensive. At the same time, commercial machine translation systems are now robust. Can we leverage these systems to translate English-language datasets automatically? In this paper, we offer a positive response for natural language inference (NLI) in Turkish. We translated two large English NLI datasets into Turkish and had a team of experts validate their translation quality and fidelity to the original labels. Using these datasets, we address core issues of representation for Turkish NLI. We find that in-language embeddings are essential and that morphological parsing can be avoided where the training set is large. Finally, we show that models trained on our machine-translated datasets are successful on human-translated evaluation sets. We share all code, models, and data publicly.

2019

pdf bib
Recursive Routing Networks: Learning to Compose Modules for Language Understanding
Ignacio Cases | Clemens Rosenbaum | Matthew Riemer | Atticus Geiger | Tim Klinger | Alex Tamkin | Olivia Li | Sandhini Agarwal | Joshua D. Greene | Dan Jurafsky | Christopher Potts | Lauri Karttunen
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

We introduce Recursive Routing Networks (RRNs), which are modular, adaptable models that learn effectively in diverse environments. RRNs consist of a set of functions, typically organized into a grid, and a meta-learner decision-making component called the router. The model jointly optimizes the parameters of the functions and the meta-learner’s policy for routing inputs through those functions. RRNs can be incorporated into existing architectures in a number of ways; we explore adding them to word representation layers, recurrent network hidden layers, and classifier layers. Our evaluation task is natural language inference (NLI). Using the MultiNLI corpus, we show that an RRN’s routing decisions reflect the high-level genre structure of that corpus. To show that RRNs can learn to specialize to more fine-grained semantic distinctions, we introduce a new corpus of NLI examples involving implicative predicates, and show that the model components become fine-tuned to the inferential signatures that are characteristic of these predicates.

pdf bib
TalkDown: A Corpus for Condescension Detection in Context
Zijian Wang | Christopher Potts
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Condescending language use is caustic; it can bring dialogues to an end and bifurcate communities. Thus, systems for condescension detection could have a large positive impact. A challenge here is that condescension is often impossible to detect from isolated utterances, as it depends on the discourse and social context. To address this, we present TalkDown, a new labeled dataset of condescending linguistic acts in context. We show that extending a language-only model with representations of the discourse improves performance, and we motivate techniques for dealing with the low rates of condescension overall. We also use our model to estimate condescension rates in various online communities and relate these differences to differing community norms.

pdf bib
Posing Fair Generalization Tasks for Natural Language Inference
Atticus Geiger | Ignacio Cases | Lauri Karttunen | Christopher Potts
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Deep learning models for semantics are generally evaluated using naturalistic corpora. Adversarial testing methods, in which models are evaluated on new examples with known semantic properties, have begun to reveal that good performance at these naturalistic tasks can hide serious shortcomings. However, we should insist that these evaluations be fair – that the models are given data sufficient to support the requisite kinds of generalization. In this paper, we define and motivate a formal notion of fairness in this sense. We then apply these ideas to natural language inference by constructing very challenging but provably fair artificial datasets and showing that standard neural models fail to generalize in the required ways; only task-specific models that jointly compose the premise and hypothesis are able to achieve high performance, and even these models do not solve the task perfectly.

pdf bib
An Incremental Iterated Response Model of Pragmatics
Reuben Cohn-Gordon | Noah Goodman | Christopher Potts
Proceedings of the Society for Computation in Linguistics (SCiL) 2019

pdf bib
Effective Feature Representation for Clinical Text Concept Extraction
Yifeng Tao | Bruno Godefroy | Guillaume Genthial | Christopher Potts
Proceedings of the 2nd Clinical Natural Language Processing Workshop

Crucial information about the practice of healthcare is recorded only in free-form text, which creates an enormous opportunity for high-impact NLP. However, annotated healthcare datasets tend to be small and expensive to obtain, which raises the question of how to make maximally efficient uses of the available data. To this end, we develop an LSTM-CRF model for combining unsupervised word representations and hand-built feature representations derived from publicly available healthcare ontologies. We show that this combined model yields superior performance on five datasets of diverse kinds of healthcare text (clinical, social, scientific, commercial). Each involves the labeling of complex, multi-word spans that pick out different healthcare concepts. We also introduce a new labeled dataset for identifying the treatment relations between drugs and diseases.

2018

pdf bib
Retrofitting Distributional Embeddings to Knowledge Graphs with Functional Relations
Ben Lengerich | Andrew Maas | Christopher Potts
Proceedings of the 27th International Conference on Computational Linguistics

Knowledge graphs are a versatile framework to encode richly structured data relationships, but it can be challenging to combine these graphs with unstructured data. Methods for retrofitting pre-trained entity representations to the structure of a knowledge graph typically assume that entities are embedded in a connected space and that relations imply similarity. However, useful knowledge graphs often contain diverse entities and relations (with potentially disjoint underlying corpora) which do not accord with these assumptions. To overcome these limitations, we present Functional Retrofitting, a framework that generalizes current retrofitting methods by explicitly modeling pairwise relations. Our framework can directly incorporate a variety of pairwise penalty functions previously developed for knowledge graph completion. Further, it allows users to encode, learn, and extract information about relation semantics. We present both linear and neural instantiations of the framework. Functional Retrofitting significantly outperforms existing retrofitting methods on complex knowledge graphs and loses no accuracy on simpler graphs (in which relations do imply similarity). Finally, we demonstrate the utility of the framework by predicting new drug–disease treatment pairs in a large, complex health knowledge graph.

pdf bib
Generating Bilingual Pragmatic Color References
Will Monroe | Jennifer Hu | Andrew Jong | Christopher Potts
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)

Contextual influences on language often exhibit substantial cross-lingual regularities; for example, we are more verbose in situations that require finer distinctions. However, these regularities are sometimes obscured by semantic and syntactic differences. Using a newly-collected dataset of color reference games in Mandarin Chinese (which we release to the public), we confirm that a variety of constructions display the same sensitivity to contextual difficulty in Chinese and English. We then show that a neural speaker agent trained on bilingual data with a simple multitask learning approach displays more human-like patterns of context dependence and is more pragmatically informative than its monolingual Chinese counterpart. Moreover, this is not at the expense of language-specific semantic understanding: the resulting speaker model learns the different basic color term systems of English and Chinese (with noteworthy cross-lingual influences), and it can identify synonyms between the two languages using vector analogy operations on its output layer, despite having no exposure to parallel data.

pdf bib
Mittens: an Extension of GloVe for Learning Domain-Specialized Representations
Nicholas Dingwall | Christopher Potts
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers)

We present a simple extension of the GloVe representation learning model that begins with general-purpose representations and updates them based on data from a specialized domain. We show that the resulting representations can lead to faster learning and better results on a variety of tasks.

pdf bib
Pragmatically Informative Image Captioning with Character-Level Inference
Reuben Cohn-Gordon | Noah Goodman | Christopher Potts
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers)

We combine a neural image captioner with a Rational Speech Acts (RSA) model to make a system that is pragmatically informative: its objective is to produce captions that are not merely true but also distinguish their inputs from similar images. Previous attempts to combine RSA with neural image captioning require an inference which normalizes over the entire set of possible utterances. This poses a serious problem of efficiency, previously solved by sampling a small subset of possible utterances. We instead solve this problem by implementing a version of RSA which operates at the level of characters (“a”, “b”, “c”, ...) during the unrolling of the caption. We find that the utterance-level effect of referential captions can be obtained with only character-level decisions. Finally, we introduce an automatic method for testing the performance of pragmatic speaker models, and show that our model outperforms a non-pragmatic baseline as well as a word-level RSA captioner.

pdf bib
Representing Social Media Users for Sarcasm Detection
Y. Alex Kolchinski | Christopher Potts
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

We explore two methods for representing authors in the context of textual sarcasm detection: a Bayesian approach that directly represents authors’ propensities to be sarcastic, and a dense embedding approach that can learn interactions between the author and the text. Using the SARC dataset of Reddit comments, we show that augmenting a bidirectional RNN with these representations improves performance; the Bayesian approach suffices in homogeneous contexts, whereas the added power of the dense embeddings proves valuable in more diverse ones.

2017

pdf bib
Colors in Context: A Pragmatic Neural Model for Grounded Language Understanding
Will Monroe | Robert X.D. Hawkins | Noah D. Goodman | Christopher Potts
Transactions of the Association for Computational Linguistics, Volume 5

We present a model of pragmatic referring expression interpretation in a grounded communication task (identifying colors from descriptions) that draws upon predictions from two recurrent neural network classifiers, a speaker and a listener, unified by a recursive pragmatic reasoning framework. Experiments show that this combined pragmatic model interprets color descriptions more accurately than the classifiers from which it is built, and that much of this improvement results from combining the speaker and listener perspectives. We observe that pragmatic reasoning helps primarily in the hardest cases: when the model must distinguish very similar colors, or when few utterances adequately express the target color. Our findings make use of a newly-collected corpus of human utterances in color reference games, which exhibit a variety of pragmatic behaviors. We also show that the embedded speaker model reproduces many of these pragmatic behaviors.

2016

pdf bib
A Fast Unified Model for Parsing and Sentence Understanding
Samuel R. Bowman | Jon Gauthier | Abhinav Rastogi | Raghav Gupta | Christopher D. Manning | Christopher Potts
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

pdf bib
Learning to Generate Compositional Color Descriptions
Will Monroe | Noah D. Goodman | Christopher Potts
Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing

2015

pdf bib
Recursive Neural Networks Can Learn Logical Semantics
Samuel R. Bowman | Christopher Potts | Christopher D. Manning
Proceedings of the 3rd Workshop on Continuous Vector Space Models and their Compositionality

pdf bib
Text to 3D Scene Generation with Rich Lexical Grounding
Angel Chang | Will Monroe | Manolis Savva | Christopher Potts | Christopher D. Manning
Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

pdf bib
A large annotated corpus for learning natural language inference
Samuel R. Bowman | Gabor Angeli | Christopher Potts | Christopher D. Manning
Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing

2014

pdf bib
Exploiting Social Network Structure for Person-to-Person Sentiment Analysis
Robert West | Hristo S. Paskov | Jure Leskovec | Christopher Potts
Transactions of the Association for Computational Linguistics, Volume 2

Person-to-person evaluations are prevalent in all kinds of discourse and important for establishing reputations, building social bonds, and shaping public opinion. Such evaluations can be analyzed separately using signed social networks and textual sentiment analysis, but this misses the rich interactions between language and social context. To capture such interactions, we develop a model that predicts individual A’s opinion of individual B by synthesizing information from the signed social network in which A and B are embedded with sentiment analysis of the evaluative texts relating A to B. We prove that this problem is NP-hard but can be relaxed to an efficiently solvable hinge-loss Markov random field, and we show that this implementation outperforms text-only and network-only versions in two very different datasets involving community-level decision-making: the Wikipedia Requests for Adminship corpus and the Convote U.S. Congressional speech corpus.

2013

pdf bib
The Life and Death of Discourse Entities: Identifying Singleton Mentions
Marta Recasens | Marie-Catherine de Marneffe | Christopher Potts
Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

pdf bib
Emergence of Gricean Maxims from Multi-Agent Decision Theory
Adam Vogel | Max Bodoia | Christopher Potts | Daniel Jurafsky
Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

pdf bib
Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank
Richard Socher | Alex Perelygin | Jean Wu | Jason Chuang | Christopher D. Manning | Andrew Ng | Christopher Potts
Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing

pdf bib
A computational approach to politeness with application to social factors
Cristian Danescu-Niculescu-Mizil | Moritz Sudhof | Dan Jurafsky | Jure Leskovec | Christopher Potts
Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

pdf bib
Implicatures and Nested Beliefs in Approximate Decentralized-POMDPs
Adam Vogel | Christopher Potts | Dan Jurafsky
Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

2012

pdf bib
Did It Happen? The Pragmatic Complexity of Veridicality Assessment
Marie-Catherine de Marneffe | Christopher D. Manning | Christopher Potts
Computational Linguistics, Volume 38, Issue 2 - June 2012

2011

pdf bib
Learning Word Vectors for Sentiment Analysis
Andrew L. Maas | Raymond E. Daly | Peter T. Pham | Dan Huang | Andrew Y. Ng | Christopher Potts
Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies

2010

pdf bib
Crowdsourcing and language studies: the new generation of linguistic data
Robert Munro | Steven Bethard | Victor Kuperman | Vicky Tzuyin Lai | Robin Melnick | Christopher Potts | Tyler Schnoebelen | Harry Tily
Proceedings of the NAACL HLT 2010 Workshop on Creating Speech and Language Data with Amazon’s Mechanical Turk

pdf bib
“Was It Good? It Was Provocative.” Learning the Meaning of Scalar Adjectives
Marie-Catherine de Marneffe | Christopher D. Manning | Christopher Potts
Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics

2009

pdf bib
Not a Simple Yes or No: Uncertainty in Indirect Answers
Marie-Catherine de Marneffe | Scott Grimm | Christopher Potts
Proceedings of the SIGDIAL 2009 Conference

Search
Co-authors