Chuan Meng


2025

pdf bib
SOLID: Self-seeding and Multi-intent Self-instructing LLMs for Generating Intent-aware Information-Seeking Dialogs
Arian Askari | Roxana Petcu | Chuan Meng | Mohammad Aliannejadi | Amin Abolghasemi | Evangelos Kanoulas | Suzan Verberne
Findings of the Association for Computational Linguistics: NAACL 2025

Intent prediction in information-seeking dialogs is challenging and requires a substantial amount of data with human-labeled intents for effective model training. While Large Language Models (LLMs) have demonstrated effectiveness in generating synthetic data, existing methods typically rely on human feedback and are tailored to structured, task-oriented intents. In this paper, we leverage LLMs for zero-shot generation of large-scale, open-domain, intent-aware information-seeking dialogs to serve as training data for intent prediction models. We introduce SOLID, a method that generates dialogs turn by turn using novel self-seeding and multi-intent self-instructing strategies. Additionally, we propose SOLID-RL, a finetuned version that generates an entire dialog in one step using data created with SOLID. SOLID and SOLID-RL are each used to generate over 300k intent-aware dialogs, significantly surpassing the size of existing datasets. Experiments show that intent prediction models trained on sampled dialogs generated by SOLID and SOLID-RL outperform those trained solely on human-generated dialogs. Our findings demonstrate the potential of LLMs to expand training datasets, as they provide valuable resources for conversational agents across multiple tasks. Our self-seeding and self-instructing approaches are adaptable to various conversational data types and languages with minimal modifications.

2023

pdf bib
Expand, Highlight, Generate: RL-driven Document Generation for Passage Reranking
Arian Askari | Mohammad Aliannejadi | Chuan Meng | Evangelos Kanoulas | Suzan Verberne
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Generating synthetic training data based on large language models (LLMs) for ranking models has gained attention recently. Prior studies use LLMs to build pseudo query-document pairs by generating synthetic queries from documents in a corpus. In this paper, we propose a new perspective of data augmentation: generating synthetic documents from queries. To achieve this, we propose DocGen, that consists of a three-step pipeline that utilizes the few-shot capabilities of LLMs. DocGen pipeline performs synthetic document generation by (i) expanding, (ii) highlighting the original query, and then (iii) generating a synthetic document that is likely to be relevant to the query. To further improve the relevance between generated synthetic documents and their corresponding queries, we propose DocGen-RL, which regards the estimated relevance of the document as a reward and leverages reinforcement learning (RL) to optimize DocGen pipeline. Extensive experiments demonstrate that DocGen pipeline and DocGen-RL significantly outperform existing state-of-theart data augmentation methods, such as InPars, indicating that our new perspective of generating documents leverages the capacity of LLMs in generating synthetic data more effectively. We release the code, generated data, and model checkpoints to foster research in this area.