The Parallel Meaning Bank (PMB) serves as a corpus for semantic processing with a focus on semantic parsing and text generation. Currently, we witness an excellent performance of neural parsers and generators on the PMB. This might suggest that such semantic processing tasks have by and large been solved. We argue that this is not the case and that performance scores from the past on the PMB are inflated by non-optimal data splits and test sets that are too easy. In response, we introduce several changes. First, instead of the prior random split, we propose a more systematic splitting approach to improve the reliability of the standard test data. Second, except for the standard test set, we also propose two challenge sets: one with longer texts including discourse structure, and one that addresses compositional generalization. We evaluate five neural models for semantic parsing and meaning-to-text generation. Our results show that model performance declines (in some cases dramatically) on the challenge sets, revealing the limitations of neural models when confronting such challenges.
Pre-trained language models (PLMs) have achieved great success in NLP and have recently been used for tasks in computational semantics. However, these tasks do not fully benefit from PLMs since meaning representations are not explicitly included. We introduce multilingual pre-trained language-meaning models based on Discourse Representation Structures (DRSs), including meaning representations besides natural language texts in the same model, and design a new strategy to reduce the gap between the pre-training and fine-tuning objectives. Since DRSs are language neutral, cross-lingual transfer learning is adopted to further improve the performance of non-English tasks. Automatic evaluation results show that our approach achieves the best performance on both the multilingual DRS parsing and DRS-to-text generation tasks. Correlation analysis between automatic metrics and human judgements on the generation task further validates the effectiveness of our model. Human inspection reveals that out-of-vocabulary tokens are the main cause of erroneous results.
Previous work has predominantly focused on monolingual English semantic parsing. We, instead, explore the feasibility of Chinese semantic parsing in the absence of labeled data for Chinese meaning representations. We describe the pipeline of automatically collecting the linearized Chinese meaning representation data for sequential-to-sequential neural networks. We further propose a test suite designed explicitly for Chinese semantic parsing, which provides fine-grained evaluation for parsing performance, where we aim to study Chinese parsing difficulties. Our experimental results show that the difficulty of Chinese semantic parsing is mainly caused by adverbs. Realizing Chinese parsing through machine translation and an English parser yields slightly lower performance than training a model directly on Chinese data.
We present an end-to-end neural approach to generate English sentences from formal meaning representations, Discourse Representation Structures (DRSs). We use a rather standard bi-LSTM sequence-to-sequence model, work with a linearized DRS input representation, and evaluate character-level and word-level decoders. We obtain very encouraging results in terms of reference-based automatic metrics such as BLEU. But because such metrics only evaluate the surface level of generated output, we develop a new metric, ROSE, that targets specific semantic phenomena. We do this with five DRS generation challenge sets focusing on tense, grammatical number, polarity, named entities and quantities. The aim of these challenge sets is to assess the neural generator’s systematicity and generalization to unseen inputs.
Neural semantic parsers have obtained acceptable results in the context of parsing DRSs (Discourse Representation Structures). In particular models with character sequences as input showed remarkable performance for English. But how does this approach perform on languages with a different writing system, like Chinese, a language with a large vocabulary of characters? Does rule-based tokenisation of the input help, and which granularity is preferred: characters, or words? The results are promising. Even with DRSs based on English, good results for Chinese are obtained. Tokenisation offers a small advantage for English, but not for Chinese. Overall, characters are preferred as input, both for English and Chinese.