Counterfactually Augmented Data (CAD) involves creating new data samples by applying minimal yet sufficient modifications to flip the label of existing data samples to other classes. Training with CAD enhances model robustness against spurious features that happen to correlate with labels by spreading the casual relationships across different classes. Yet, recent research reveals that training with CAD may lead models to overly focus on modified features while ignoring other important contextual information, inadvertently introducing biases that may impair performance on out-of-distribution (OOD) datasets. To mitigate this issue, we employ contrastive learning to promote global feature alignment in addition to learning counterfactual clues. We theoretically prove that contrastive loss can encourage models to leverage a broader range of features beyond those modified ones. Comprehensive experiments on two human-edited CAD datasets demonstrate that our proposed method outperforms the state-of-the-art on OOD datasets.
In cross-lingual named entity recognition (NER), self-training is commonly used to bridge the linguistic gap by training on pseudo-labeled target-language data. However, due to sub-optimal performance on target languages, the pseudo labels are often noisy and limit the overall performance. In this work, we aim to improve self-training for cross-lingual NER by combining representation learning and pseudo label refinement in one coherent framework. Our proposed method, namely ContProto mainly comprises two components: (1) contrastive self-training and (2) prototype-based pseudo-labeling. Our contrastive self-training facilitates span classification by separating clusters of different classes, and enhances cross-lingual transferability by producing closely-aligned representations between the source and target language. Meanwhile, prototype-based pseudo-labeling effectively improves the accuracy of pseudo labels during training. We evaluate ContProto on multiple transfer pairs, and experimental results show our method brings substantial improvements over current state-of-the-art methods.
Large Language Models (LLMs) especially ChatGPT have produced impressive results in various areas, but their potential human-like psychology is still largely unexplored. Existing works study the virtual personalities of LLMs but rarely explore the possibility of analyzing human personalities via LLMs. This paper presents a generic evaluation framework for LLMs to assess human personalities based on Myers–Briggs Type Indicator (MBTI) tests. Specifically, we first devise unbiased prompts by randomly permuting options in MBTI questions and adopt the average testing result to encourage more impartial answer generation. Then, we propose to replace the subject in question statements to enable flexible queries and assessments on different subjects from LLMs. Finally, we re-formulate the question instructions in a manner of correctness evaluation to facilitate LLMs to generate clearer responses. The proposed framework enables LLMs to flexibly assess personalities of different groups of people. We further propose three evaluation metrics to measure the consistency, robustness, and fairness of assessment results from state-of-the-art LLMs including ChatGPT and GPT-4. Our experiments reveal ChatGPT’s ability to assess human personalities, and the average results demonstrate that it can achieve more consistent and fairer assessments in spite of lower robustness against prompt biases compared with InstructGPT.
Recently, contrastive learning has become a key component in fine-tuning code search models for software development efficiency and effectiveness. It pulls together positive code snippets while pushing negative samples away given search queries. Among contrastive learning, InfoNCE is the most widely used loss function due to its better performance. However, the following problems in negative samples of InfoNCE may deteriorate its representation learning: 1) The existence of false negative samples in large code corpora due to duplications. 2). The failure to explicitly differentiate between the potential relevance of negative samples. As an example, a bubble sorting algorithm example is less “negative” than a file saving function for the quick sorting algorithm query. In this paper, we tackle the above problems by proposing a simple yet effective Soft-InfoNCE loss that inserts weight terms into InfoNCE. In our proposed loss function, we apply three methods to estimate the weights of negative pairs and show that the vanilla InfoNCE loss is a special case of Soft-InfoNCE. Theoretically, we analyze the effects of Soft-InfoNCE on controlling the distribution of learnt code representations and on deducing a more precise mutual information estimation. We furthermore discuss the superiority of proposed loss functions with other design alternatives. Extensive experiments demonstrate the effectiveness of Soft-InfoNCE and weights estimation methods under state-of-the-art code search models on a large-scale public dataset consisting of six programming languages.
Conversational Recommendation Systems recommend items through language based interactions with users. In order to generate naturalistic conversations and effectively utilize knowledge graphs (KGs) containing background information, we propose a novel Bag-of-Entities loss, which encourages the generated utterances to mention concepts related to the item being recommended, such as the genre or director of a movie. We also propose an alignment loss to further integrate KG entities into the response generation network. Experiments on the large-scale REDIAL dataset demonstrate that the proposed system consistently outperforms state-of-the-art baselines.
Code search, which aims at retrieving the most relevant code fragment for a given natural language query, is a common activity in software development practice. Recently, contrastive learning is widely used in code search research, where many data augmentation approaches for source code (e.g., semantic-preserving program transformation) are proposed to learn better representations. However, these augmentations are at the raw-data level, which requires additional code analysis in the preprocessing stage and additional training cost in the training stage. In this paper, we explore augmentation methods that augment data (both code and query) at representation level which does not require additional data processing and training, and based on this we propose a general format of representation-level augmentation that unifies existing methods. Then, we propose three new augmentation methods (linear extrapolation, binary interpolation, and Gaussian scaling) based on the general format. Furthermore, we theoretically analyze the advantages of the proposed augmentation methods over traditional contrastive learning methods on code search. We experimentally evaluate the proposed representation-level augmentation methods with state-of-the-art code search models on a large-scale public dataset consisting of six programming languages. The experimental results show that our approach can consistently boost the performance of the studied code search models.
Cross-lingual named entity recognition (NER) suffers from data scarcity in the target languages, especially under zero-shot settings. Existing translate-train or knowledge distillation methods attempt to bridge the language gap, but often introduce a high level of noise. To solve this problem, consistency training methods regularize the model to be robust towards perturbations on data or hidden states.However, such methods are likely to violate the consistency hypothesis, or mainly focus on coarse-grain consistency.We propose ConNER as a novel consistency training framework for cross-lingual NER, which comprises of: (1) translation-based consistency training on unlabeled target-language data, and (2) dropout-based consistency training on labeled source-language data. ConNER effectively leverages unlabeled target-language data and alleviates overfitting on the source language to enhance the cross-lingual adaptability. Experimental results show our ConNER achieves consistent improvement over various baseline methods.
Over the last few years, there has been a move towards data curation for multilingual task-oriented dialogue (ToD) systems that can serve people speaking different languages. However, existing multilingual ToD datasets either have a limited coverage of languages due to the high cost of data curation, or ignore the fact that dialogue entities barely exist in countries speaking these languages. To tackle these limitations, we introduce a novel data curation method that generates GlobalWoZ — a large-scale multilingual ToD dataset globalized from an English ToD dataset for three unexplored use cases of multilingual ToD systems. Our method is based on translating dialogue templates and filling them with local entities in the target-language countries. Besides, we extend the coverage of target languages to 20 languages. We will release our dataset and a set of strong baselines to encourage research on multilingual ToD systems for real use cases.
Data augmentation is an effective solution to data scarcity in low-resource scenarios. However, when applied to token-level tasks such as NER, data augmentation methods often suffer from token-label misalignment, which leads to unsatsifactory performance. In this work, we propose Masked Entity Language Modeling (MELM) as a novel data augmentation framework for low-resource NER. To alleviate the token-label misalignment issue, we explicitly inject NER labels into sentence context, and thus the fine-tuned MELM is able to predict masked entity tokens by explicitly conditioning on their labels. Thereby, MELM generates high-quality augmented data with novel entities, which provides rich entity regularity knowledge and boosts NER performance. When training data from multiple languages are available, we also integrate MELM with code-mixing for further improvement. We demonstrate the effectiveness of MELM on monolingual, cross-lingual and multilingual NER across various low-resource levels. Experimental results show that our MELM consistently outperforms the baseline methods.
With the evolution of pre-trained language models, current open-domain dialogue systems have achieved great progress in conducting one-session conversations. In contrast, Multi-Session Conversation (MSC), which consists of multiple sessions over a long term with the same user, is under-investigated. In this paper, we propose History-Aware Hierarchical Transformer (HAHT) for multi-session open-domain dialogue. HAHT maintains a long-term memory of history conversations and utilizes history information to understand current conversation context and generate well-informed and context-relevant responses. Specifically, HAHT first encodes history conversation sessions hierarchically into a history memory. Then, HAHT leverages historical information to facilitate the understanding of the current conversation context by encoding the history memory together with the current context with attention-based mechanisms. Finally, to explicitly utilize historical information, HAHT uses a history-aware response generator that switches between a generic vocabulary and a history-aware vocabulary. Experimental results on a large-scale MSC dataset suggest that the proposed HAHT model consistently outperforms baseline models. Human evaluation results support that HAHT generates more human-like, context-relevant, and history-relevant responses than baseline models.
Named Entity Recognition (NER) for low-resource languages is a both practical and challenging research problem. This paper addresses zero-shot transfer for cross-lingual NER, especially when the amount of source-language training data is also limited. The paper first proposes a simple but effective labeled sequence translation method to translate source-language training data to target languages and avoids problems such as word order change and entity span determination. With the source-language data as well as the translated data, a generation-based multilingual data augmentation method is introduced to further increase diversity by generating synthetic labeled data in multiple languages. These augmented data enable the language model based NER models to generalize better with both the language-specific features from the target-language synthetic data and the language-independent features from multilingual synthetic data. An extensive set of experiments were conducted to demonstrate encouraging cross-lingual transfer performance of the new research on a wide variety of target languages.
The existence of multiple datasets for sarcasm detection prompts us to apply transfer learning to exploit their commonality. The adversarial neural transfer (ANT) framework utilizes multiple loss terms that encourage the source-domain and the target-domain feature distributions to be similar while optimizing for domain-specific performance. However, these objectives may be in conflict, which can lead to optimization difficulties and sometimes diminished transfer. We propose a generalized latent optimization strategy that allows different losses to accommodate each other and improves training dynamics. The proposed method outperforms transfer learning and meta-learning baselines. In particular, we achieve 10.02% absolute performance gain over the previous state of the art on the iSarcasm dataset.
Data augmentation techniques have been widely used to improve machine learning performance as they facilitate generalization. In this work, we propose a novel augmentation method to generate high quality synthetic data for low-resource tagging tasks with language models trained on the linearized labeled sentences. Our method is applicable to both supervised and semi-supervised settings. For the supervised settings, we conduct extensive experiments on named entity recognition (NER), part of speech (POS) tagging and end-to-end target based sentiment analysis (E2E-TBSA) tasks. For the semi-supervised settings, we evaluate our method on the NER task under the conditions of given unlabeled data only and unlabeled data plus a knowledge base. The results show that our method can consistently outperform the baselines, particularly when the given gold training data are less.
Empathetic conversational models have been shown to improve user satisfaction and task outcomes in numerous domains. In Psychology, persona has been shown to be highly correlated to personality, which in turn influences empathy. In addition, our empirical analysis also suggests that persona plays an important role in empathetic conversations. To this end, we propose a new task towards persona-based empathetic conversations and present the first empirical study on the impact of persona on empathetic responding. Specifically, we first present a novel large-scale multi-domain dataset for persona-based empathetic conversations. We then propose CoBERT, an efficient BERT-based response selection model that obtains the state-of-the-art performance on our dataset. Finally, we conduct extensive experiments to investigate the impact of persona on empathetic responding. Notably, our results show that persona improves empathetic responding more when CoBERT is trained on empathetic conversations than non-empathetic ones, establishing an empirical link between persona and empathy in human conversations.
In this paper we present our model on the task of emotion detection in textual conversations in SemEval-2019. Our model extends the Recurrent Convolutional Neural Network (RCNN) by using external fine-tuned word representations and DeepMoji sentence representations. We also explored several other competitive pre-trained word and sentence representations including ELMo, BERT and InferSent but found inferior performance. In addition, we conducted extensive sensitivity analysis, which empirically shows that our model is relatively robust to hyper-parameters. Our model requires no handcrafted features or emotion lexicons but achieved good performance with a micro-F1 score of 0.7463.
Messages in human conversations inherently convey emotions. The task of detecting emotions in textual conversations leads to a wide range of applications such as opinion mining in social networks. However, enabling machines to analyze emotions in conversations is challenging, partly because humans often rely on the context and commonsense knowledge to express emotions. In this paper, we address these challenges by proposing a Knowledge-Enriched Transformer (KET), where contextual utterances are interpreted using hierarchical self-attention and external commonsense knowledge is dynamically leveraged using a context-aware affective graph attention mechanism. Experiments on multiple textual conversation datasets demonstrate that both context and commonsense knowledge are consistently beneficial to the emotion detection performance. In addition, the experimental results show that our KET model outperforms the state-of-the-art models on most of the tested datasets in F1 score.
Recent years have witnessed the proliferation of Massive Open Online Courses (MOOCs). With massive learners being offered MOOCs, there is a demand that the forum contents within MOOCs need to be classified in order to facilitate both learners and instructors. Therefore we investigate a significant application, which is to associate forum threads to subtitles of video clips. This task can be regarded as a document ranking problem, and the key is how to learn a distinguishable text representation from word sequences and learners’ behavior sequences. In this paper, we propose a novel cascade model, which can capture both the latent semantics and latent similarity by modeling MOOC data. Experimental results on two real-world datasets demonstrate that our textual representation outperforms state-of-the-art unsupervised counterparts for the application.