Scaling up the number of parameters of language models has proven to be an effective approach to improve performance. For dense models, increasing their size proportionally increases their computational footprint. In this work, we seek to aggressively decouple learning capacity and FLOPs through Mixture-of-Experts (MoE) style models with large knowledge-rich vocabulary based routing functions. Our proposed approach, dubbed Mixture of Word Experts (MoWE), can be seen as a memory augmented model, where a large set of word-specific experts play the role of a sparse memory. We demonstrate that MoWE performs significantly better than the T5 family of models with similar number of FLOPs in a variety of NLP tasks. Moreover, MoWE outperforms traditional MoE models on knowledge intensive tasks and has similar performance to complex memory augmented approaches that often require to invoke custom mechanisms to search the sparse memory.
Despite readily memorizing world knowledge about entities, pre-trained language models (LMs) struggle to compose together two or more facts to perform multi-hop reasoning in question-answering tasks. In this work, we propose techniques that improve upon this limitation by relying on random-walks over structured knowledge graphs. Specifically, we use soft-prompts to guide LMs to chain together their encoded knowledge by learning to map multi-hop questions to random-walk paths that lead to the answer. Applying our methods on two T5 LMs shows substantial improvements over standard tuning approaches in answering questions that require multi-hop reasoning.
State-of-the-art neural models typically encode document-query pairs using cross-attention for re-ranking. To this end, models generally utilize an encoder-only (like BERT) paradigm or an encoder-decoder (like T5) approach. These paradigms, however, are not without flaws, i.e., running the model on all query-document pairs at inference-time incurs a significant computational cost. This paper proposes a new training and inference paradigm for re-ranking. We propose to finetune a pretrained encoder-decoder model using in the form of document to query generation. Subsequently, we show that this encoder-decoder architecture can be decomposed into a decoder-only language model during inference. This results in significant inference time speedups since the decoder-only architecture only needs to learn to interpret static encoder embeddings during inference. Our experiments show that this new paradigm achieves results that are comparable to the more expensive cross-attention ranking approaches while being up to 6.8X faster. We believe this work paves the way for more efficient neural rankers that leverage large pretrained models.
Compositional reasoning tasks such as multi-hop question answering require models to learn how to make latent decisions using only weak supervision from the final answer. Crowdsourced datasets gathered for these tasks, however, often contain only a slice of the underlying task distribution, which can induce unanticipated biases such as shallow word overlap between the question and context. Recent works have shown that discriminative training results in models that exploit these underlying biases to achieve a better held-out performance, without learning the right way to reason. We propose a generative context selection model for multi-hop QA that reasons about how the given question could have been generated given a context pair and not just independent contexts. We show that on HotpotQA, while being comparable to the state-of-the-art answering performance, our proposed generative passage selection model has a better performance (4.9% higher than baseline) on adversarial held-out set which tests robustness of model’s multi-hop reasoning capabilities.
In open-domain question answering, questions are highly likely to be ambiguous because users may not know the scope of relevant topics when formulating them. Therefore, a system needs to find possible interpretations of the question, and predict one or multiple plausible answers. When multiple plausible answers are found, the system should rewrite the question for each answer to resolve the ambiguity. In this paper, we present a model that aggregates and combines evidence from multiple passages to adaptively predict a single answer or a set of question-answer pairs for ambiguous questions. In addition, we propose a novel round-trip prediction approach to iteratively generate additional interpretations that our model fails to find in the first pass, and then verify and filter out the incorrect question-answer pairs to arrive at the final disambiguated output. Our model, named Refuel, achieves a new state-of-the-art performance on the AmbigQA dataset, and shows competitive performance on NQ-Open and TriviaQA. The proposed round-trip prediction is a model-agnostic general approach for answering ambiguous open-domain questions, which improves our Refuel as well as several baseline models. We release source code for our models and experiments at https://github.com/amzn/refuel-open-domain-qa.
A commonly observed problem with the state-of-the art abstractive summarization models is that the generated summaries can be factually inconsistent with the input documents. The fact that automatic summarization may produce plausible-sounding yet inaccurate summaries is a major concern that limits its wide application. In this paper we present an approach to address factual consistency in summarization. We first propose an efficient automatic evaluation metric to measure factual consistency; next, we propose a novel learning algorithm that maximizes the proposed metric during model training. Through extensive experiments, we confirm that our method is effective in improving factual consistency and even overall quality of the summaries, as judged by both automatic metrics and human evaluation.
A key challenge for abstractive summarization is ensuring factual consistency of the generated summary with respect to the original document. For example, state-of-the-art models trained on existing datasets exhibit entity hallucination, generating names of entities that are not present in the source document. We propose a set of new metrics to quantify the entity-level factual consistency of generated summaries and we show that the entity hallucination problem can be alleviated by simply filtering the training data. In addition, we propose a summary-worthy entity classification task to the training process as well as a joint entity and summary generation approach, which yield further improvements in entity level metrics.
We propose a generative framework for joint sequence labeling and sentence-level classification. Our model performs multiple sequence labeling tasks at once using a single, shared natural language output space. Unlike prior discriminative methods, our model naturally incorporates label semantics and shares knowledge across tasks. Our framework general purpose, performing well on few-shot learning, low resource, and high resource tasks. We demonstrate these advantages on popular named entity recognition, slot labeling, and intent classification benchmarks. We set a new state-of-the-art for few-shot slot labeling, improving substantially upon the previous 5-shot (75.0% to 90.9%) and 1-shot (70.4% to 81.0%) state-of-the-art results. Furthermore, our model generates large improvements (46.27% to 63.83%) in low resource slot labeling over a BERT baseline by incorporating label semantics. We also maintain competitive results on high resource tasks, performing within two points of the state-of-the-art on all tasks and setting a new state-of-the-art on the SNIPS dataset.
Generative models for Information Retrieval, where ranking of documents is viewed as the task of generating a query from a document’s language model, were very successful in various IR tasks in the past. However, with the advent of modern deep neural networks, attention has shifted to discriminative ranking functions that model the semantic similarity of documents and queries instead. Recently, deep generative models such as GPT2 and BART have been shown to be excellent text generators, but their effectiveness as rankers have not been demonstrated yet. In this work, we revisit the generative framework for information retrieval and show that our generative approaches are as effective as state-of-the-art semantic similarity-based discriminative models for the answer selection task. Additionally, we demonstrate the effectiveness of unlikelihood losses for IR.
We propose an end-to-end approach for synthetic QA data generation. Our model comprises a single transformer-based encoder-decoder network that is trained end-to-end to generate both answers and questions. In a nutshell, we feed a passage to the encoder and ask the decoder to generate a question and an answer token-by-token. The likelihood produced in the generation process is used as a filtering score, which avoids the need for a separate filtering model. Our generator is trained by fine-tuning a pretrained LM using maximum likelihood estimation. The experimental results indicate significant improvements in the domain adaptation of QA models outperforming current state-of-the-art methods.
In this work, we present a dual learning approach for unsupervised text to path and path to text transfers in Commonsense Knowledge Bases (KBs). We investigate the impact of weak supervision by creating a weakly supervised dataset and show that even a slight amount of supervision can significantly improve the model performance and enable better-quality transfers. We examine different model architectures, and evaluation metrics, proposing a novel Commonsense KB completion metric tailored for generative models. Extensive experimental results show that the proposed method compares very favorably to the existing baselines. This approach is a viable step towards a more advanced system for automatic KB construction/expansion and the reverse operation of KB conversion to coherent textual descriptions.
Generative feature matching network (GFMN) is an approach for training state-of-the-art implicit generative models for images by performing moment matching on features from pre-trained neural networks. In this paper, we present new GFMN formulations that are effective for sequential data. Our experimental results show the effectiveness of the proposed method, SeqGFMN, for three distinct generation tasks in English: unconditional text generation, class-conditional text generation, and unsupervised text style transfer. SeqGFMN is stable to train and outperforms various adversarial approaches for text generation and text style transfer.
Unsupervised domain adaptation addresses the problem of leveraging labeled data in a source domain to learn a well-performing model in a target domain where labels are unavailable. In this paper, we improve upon a recent theoretical work (Zhang et al., 2019b) and adopt the Margin Disparity Discrepancy (MDD) unsupervised domain adaptation algorithm to solve the cross-lingual text labeling problems. Experiments on cross-lingual document classification and NER demonstrate the proposed domain adaptation approach advances the state-of-the-art results by a large margin. Specifically, we improve MDD by efficiently optimizing the margin loss on the source domain via Virtual Adversarial Training (VAT). This bridges the gap between theory and the loss function used in the original work Zhang et al.(2019b), and thereby significantly boosts the performance. Our numerical results also indicate that VAT can remarkably improve the generalization performance of both domains for various domain adaptation approaches.
Coreference resolution aims to identify in a text all mentions that refer to the same real world entity. The state-of-the-art end-to-end neural coreference model considers all text spans in a document as potential mentions and learns to link an antecedent for each possible mention. In this paper, we propose to improve the end-to-end coreference resolution system by (1) using a biaffine attention model to get antecedent scores for each possible mention, and (2) jointly optimizing the mention detection accuracy and mention clustering accuracy given the mention cluster labels. Our model achieves the state-of-the-art performance on the CoNLL-2012 shared task English test set.
We introduce a new approach to tackle the problem of offensive language in online social media. Our approach uses unsupervised text style transfer to translate offensive sentences into non-offensive ones. We propose a new method for training encoder-decoders using non-parallel data that combines a collaborative classifier, attention and the cycle consistency loss. Experimental results on data from Twitter and Reddit show that our method outperforms a state-of-the-art text style transfer system in two out of three quantitative metrics and produces reliable non-offensive transferred sentences.
Relation detection is a core component of many NLP applications including Knowledge Base Question Answering (KBQA). In this paper, we propose a hierarchical recurrent neural network enhanced by residual learning which detects KB relations given an input question. Our method uses deep residual bidirectional LSTMs to compare questions and relation names via different levels of abstraction. Additionally, we propose a simple KBQA system that integrates entity linking and our proposed relation detector to make the two components enhance each other. Our experimental results show that our approach not only achieves outstanding relation detection performance, but more importantly, it helps our KBQA system achieve state-of-the-art accuracy for both single-relation (SimpleQuestions) and multi-relation (WebQSP) QA benchmarks.