Daniel Fried


2024

pdf bib
Proceedings of the Third Workshop on Understanding Implicit and Underspecified Language
Valentina Pyatkin | Daniel Fried | Elias Stengel-Eskin | Alisa Liu | Sandro Pezzelle
Proceedings of the Third Workshop on Understanding Implicit and Underspecified Language

pdf bib
Asking More Informative Questions for Grounded Retrieval
Sedrick Keh | Justin Chiu | Daniel Fried
Findings of the Association for Computational Linguistics: NAACL 2024

When a model is trying to gather information in an interactive setting, it benefits from asking informative questions. However, in the case of a grounded multi-turn image identification task, previous studies have been constrained to polar yes/no questions (White et al., 2021), limiting how much information the model can gain in a single turn. We present an approach that formulates more informative, open-ended questions. In doing so, we discover that off-the-shelf visual question answering (VQA) models often make presupposition errors, which standard information gain question selection methods fail to account for. To address this issue, we propose a method that can incorporate presupposition handling into both question selection and belief updates. Specifically, we use a two-stage process, where the model first filters out images which are irrelevant to a given question, then updates its beliefs about which image the user intends. Through self-play and human evaluations, we show that our method is successful in asking informative open-ended questions, increasing accuracy over the past state-of-the-art by 14%, while resulting in 48% more efficient games in human evaluations.

pdf bib
Evaluating Large Language Model Biases in Persona-Steered Generation
Andy Liu | Mona Diab | Daniel Fried
Findings of the Association for Computational Linguistics ACL 2024

The task of persona-steered text generation requires large language models (LLMs) to generate text that reflects the distribution of views that an individual fitting a persona could have. People have multifaceted personas, but prior work on bias in LLM-generated opinions has only explored multiple-choice settings or one-dimensional personas. We define an incongruous persona as a persona with multiple traits where one trait makes its other traits less likely in human survey data, e.g. political liberals who support increased military spending. We find that LLMs are 9.7% less steerable towards incongruous personas than congruous ones, sometimes generating the stereotypical stance associated with its demographic rather than the target stance. Models that we evaluate that are fine-tuned with Reinforcement Learning from Human Feedback (RLHF) are more steerable, especially towards stances associated with political liberals and women, but present significantly less diverse views of personas. We also find variance in LLM steerability that cannot be predicted from multiple-choice opinion evaluation. Our results show the importance of evaluating models in open-ended text generation, as it can surface new LLM opinion biases. Moreover, such a setup can shed light on our ability to steer models toward a richer and more diverse range of viewpoints.

pdf bib
VisualWebArena: Evaluating Multimodal Agents on Realistic Visual Web Tasks
Jing Yu Koh | Robert Lo | Lawrence Jang | Vikram Duvvur | Ming Lim | Po-Yu Huang | Graham Neubig | Shuyan Zhou | Russ Salakhutdinov | Daniel Fried
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Autonomous agents capable of planning, reasoning, and executing actions on the web offer a promising avenue for automating computer tasks. However, the majority of existing benchmarks primarily focus on text-based agents, neglecting many natural tasks that require visual information to effectively solve. Given that most computer interfaces cater to human perception, visual information often augments textual data in ways that text-only models struggle to harness effectively. To bridge this gap, we introduce VisualWebArena, a benchmark designed to assess the performance of multimodal web agents on *realistic visually grounded tasks*. VisualWebArena comprises of a set of diverse and complex web-based tasks that evaluate various capabilities of autonomous multimodal agents. To perform on this benchmark, agents need to accurately process image-text inputs, interpret natural language instructions, and execute actions on websites to accomplish user-defined objectives. We conduct an extensive evaluation of state-of-the-art LLM-based autonomous agents, including several multimodal models. Through extensive quantitative and qualitative analysis, we identify several limitations of text-only LLM agents, and reveal gaps in the capabilities of state-of-the-art multimodal language agents. VisualWebArena provides a framework for evaluating multimodal autonomous language agents, and offers insights towards building stronger autonomous agents for the web.

pdf bib
Is the Pope Catholic? Yes, the Pope is Catholic. Generative Evaluation of Non-Literal Intent Resolution in LLMs
Akhila Yerukola | Saujas Vaduguru | Daniel Fried | Maarten Sap
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

Humans often express their communicative intents indirectly or non-literally, which requires their interlocutors—human or AI—to understand beyond the literal meaning of words. While most existing work has focused on discriminative evaluations, we present a new approach to generatively evaluate large language models’ (LLMs’) intention understanding by examining their responses to non-literal utterances. Ideally, an LLM should respond in line with the true intention of a non-literal utterance, not its literal interpretation. Our findings show that LLMs struggle to generate contextually relevant responses to non-literal language. We also find that providing oracle intentions substantially improves response appropriateness, but using chain-of-thought to make models spell out intentions before responding improves much less. These findings suggest that LLMs are not yet pragmatic interlocutors, and that explicitly modeling intention could improve LLM responses to non-literal language.

2023

pdf bib
Pragmatic Inference with a CLIP Listener for Contrastive Captioning
Jiefu Ou | Benno Krojer | Daniel Fried
Findings of the Association for Computational Linguistics: ACL 2023

We propose a simple yet effective and robust method for contrastive captioning: generating discriminative captions that distinguish target images from very similar alternative distractor images. Our approach is built on a pragmatic inference procedure that formulates captioning as a reference game between a speaker, which produces possible captions describing the target, and a listener, which selects the target given the caption. Unlike previous methods that derive both speaker and listener distributions from a single captioning model, we leverage an off-the-shelf CLIP model to parameterize the listener. Compared with captioner-only pragmatic models, our method benefits from rich vision-language alignment representations from CLIP when reasoning over distractors. Like previous methods for discriminative captioning, our method uses a hyperparameter to control the tradeoff between the informativity (how likely captions are to allow a human listener to discriminate the target image) and the fluency of the captions. However, we find that our method is substantially more robust to the value of this hyperparameter than past methods, which allows us to automatically optimize the captions for informativity — outperforming past methods for discriminative captioning by 11% to 15% accuracy in human evaluations.

pdf bib
AutoReply: Detecting Nonsense in Dialogue with Discriminative Replies
Weiyan Shi | Emily Dinan | Adi Renduchintala | Daniel Fried | Athul Jacob | Zhou Yu | Mike Lewis
Findings of the Association for Computational Linguistics: EMNLP 2023

We show that dialogue models can detect errors in their own messages, by calculating the likelihood of replies that are indicative of poor messages. For example, if an agent believes its partner is likely to respond “I don’t understand” to a candidate message, that message may not make sense, so an alternative message should be chosen. We evaluate our approach on a dataset from the game Diplomacy, which contains long dialogues richly grounded in the game state, on which existing models make many errors. We first show that hand-crafted replies can be effective for the task of detecting nonsense in applications as complex as Diplomacy. We then design AutoReply, an algorithm to search for such discriminative replies automatically, given a small number of annotated dialogue examples. We find that AutoReply-generated replies outperform handcrafted replies and perform on par with supervised learning approaches.

pdf bib
Execution-Based Evaluation for Open-Domain Code Generation
Zhiruo Wang | Shuyan Zhou | Daniel Fried | Graham Neubig
Findings of the Association for Computational Linguistics: EMNLP 2023

To extend the scope of coding queries to more realistic settings, we propose ODEX, the first Open-Domain EXecution-based natural language (NL) to Python code generation dataset. ODEX has 945 NL-Code pairs spanning 79 diverse libraries, along with 1,707 human-written test cases for execution. Our NL-Code pairs are harvested from StackOverflow forums to encourage natural and practical coding queries. Moreover, ODEX supports four natural languages as intents, in English, Spanish, Japanese, and Russian. ODEX unveils intriguing behavioral differences among top-performing code language models (LM). While CODEX achieves better overall results, CODEGEN improves effectively via scaling – CODEGEN 6.1B performs comparably with CODEX 12B. Both models show substantial gaps between open and closed domains, but CODEGEN gaps tend to decrease with model size while CODEX gaps increase. We release ODEX to facilitate research into open-domain problems for the code generation community.

pdf bib
Pragmatics in Language Grounding: Phenomena, Tasks, and Modeling Approaches
Daniel Fried | Nicholas Tomlin | Jennifer Hu | Roma Patel | Aida Nematzadeh
Findings of the Association for Computational Linguistics: EMNLP 2023

People rely heavily on context to enrich meaning beyond what is literally said, enabling concise but effective communication. To interact successfully and naturally with people, user-facing artificial intelligence systems will require similar skills in pragmatics: relying on various types of context — from shared linguistic goals and conventions, to the visual and embodied world — to use language effectively. We survey existing grounded settings and pragmatic modeling approaches and analyze how the task goals, environmental contexts, and communicative affordances in each work enrich linguistic meaning. We present recommendations for future grounded task design to naturally elicit pragmatic phenomena, and suggest directions that focus on a broader range of communicative contexts and affordances.

pdf bib
Data Augmentation for Code Translation with Comparable Corpora and Multiple References
Yiqing Xie | Atharva Naik | Daniel Fried | Carolyn Rose
Findings of the Association for Computational Linguistics: EMNLP 2023

One major challenge of translating code between programming languages is that parallel training data is often limited. To overcome this challenge, we present two data augmentation techniques, one that builds comparable corpora (i.e., code pairs with similar functionality), and another that augments existing parallel data with multiple reference translations. Specifically, we build and analyze multiple types of comparable corpora, including programs generated from natural language documentation using a code generation model. Furthermore, to reduce overfitting to a single reference translation, we automatically generate additional translation references for available parallel data and filter the translations by unit tests, which increases variation in target translations. Experiments show that our data augmentation techniques significantly improve CodeT5 for translation between Java, Python, and C++ by an average of 7.5% Computational Accuracy (CA@1), which verifies the correctness of translations by execution. The code is available at https://github.com/Veronicium/CMTrans.

pdf bib
Symbolic Planning and Code Generation for Grounded Dialogue
Justin Chiu | Wenting Zhao | Derek Chen | Saujas Vaduguru | Alexander Rush | Daniel Fried
Proceedings of the 2nd Workshop on Pattern-based Approaches to NLP in the Age of Deep Learning

Large language models (LLMs) excel at processing and generating both text and code. However, LLMs have had limited applicability in grounded task-oriented dialogue as they are difficult to steer toward task objectives and fail to handle novel grounding. We present a modular and interpretable grounded dialogue system that addresses these shortcomings by composing LLMs with a symbolic planner and grounded code execution. Our system consists of a reader and planner: the reader leverages an LLM to convert partner utterances into executable code, calling functions that perform grounding. The translated code’s output is stored to track dialogue state, while a symbolic planner determines the next appropriate response. We evaluate our system’s performance on the demanding OneCommon dialogue task, involving collaborative reference resolution on abstract images of scattered dots. Our system substantially outperforms the previous state-of-the-art, including improving task success in human evaluations from 56% to 69% in the most challenging setting.

pdf bib
Symbolic Planning and Code Generation for Grounded Dialogue
Justin Chiu | Wenting Zhao | Derek Chen | Saujas Vaduguru | Alexander Rush | Daniel Fried
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Large language models (LLMs) excel at processing and generating text and code. However, LLMs have had limited applicability in grounded task-oriented dialogue as they are difficult to steer toward task objectives and fail to handle novel grounding. We present a modular and interpretable grounded dialogue system that addresses these shortcomings by composing LLMs with a symbolic planner and grounded code execution. Our system, consists of a reader and planner: the reader leverages an LLM to convert partner utterances into executable code, calling functions that perform grounding. The translated code’s output is stored to track dialogue state, while a symbolic planner determines the next appropriate response. We evaluate our system’s performance on the demanding OneCommon dialogue task, involving collaborative reference resolution on abstract images of scattered dots. Our system substantially outperforms the previous state-of-the-art, including improving task success in human evaluations from 56% to 69% in the most challenging setting.

pdf bib
API-Assisted Code Generation for Question Answering on Varied Table Structures
Yihan Cao | Shuyi Chen | Ryan Liu | Zhiruo Wang | Daniel Fried
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

A persistent challenge to table question answering (TableQA) by generating executable programs has been adapting to varied table structures, typically requiring domain-specific logical forms. In response, this paper introduces a unified TableQA framework that: (1) provides a unified representation for structured tables as multi-index Pandas data frames, (2) uses Python as a powerful querying language, and (3) uses few-shot prompting to translate NL questions into Python programs, which are executable on Pandas data frames. Furthermore, to answer complex relational questions with extended program functionality and external knowledge, our framework allows customized APIs that Python programs can call. We experiment with four TableQA datasets that involve tables of different structures — relational, multi-table, and hierarchical matrix shapes — and achieve prominent improvements over past state-of-the-art systems. In ablation studies, we (1) show benefits from our multi-index representation and APIs over baselines that use only an LLM, and (2) demonstrate that our approach is modular and can incorporate additional APIs.

pdf bib
Contrastive Decoding: Open-ended Text Generation as Optimization
Xiang Lisa Li | Ari Holtzman | Daniel Fried | Percy Liang | Jason Eisner | Tatsunori Hashimoto | Luke Zettlemoyer | Mike Lewis
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Given a language model (LM), maximum probability is a poor decoding objective for open-ended generation, because it produces short and repetitive text. On the other hand, sampling can often produce incoherent text that drifts from the original topics. We propose contrastive decoding (CD), a reliable decoding approach that optimizes a contrastive objective subject to a plausibility constraint. The contrastive objective returns the difference between the likelihood under a large LM (called the expert, e.g. OPT-13B) and a small LM (called the amateur, e.g. OPT-125M), and the constraint ensures that the outputs are plausible. CD is inspired by the fact that the failures of larger LMs (e.g., repetition, inco- herence) are even more prevalent in smaller LMs, and that this difference signals which texts should be preferred. CD requires zero additional training, and produces higher quality text than decoding from the larger LM alone. It also works across model scales (OPT-13B and GPT2-1.5B) and significantly outperforms four strong decoding algorithms (e.g., nucleus, top-k) in automatic and human evaluations across wikipedia, news and story domains.

2022

pdf bib
Natural Language to Code Translation with Execution
Freda Shi | Daniel Fried | Marjan Ghazvininejad | Luke Zettlemoyer | Sida I. Wang
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Generative models of code, pretrained on large corpora of programs, have shown great success in translating natural language to code (Chen et al., 2021; Austin et al., 2021; Li et al., 2022, inter alia). While these models do not explicitly incorporate program semantics (i.e., execution results) during training, they are able to generate correct solutions for many problems. However, choosing a single correct program from a generated set for each problem remains challenging. In this work, we introduce execution result–based minimum Bayes risk decoding (MBR-EXEC) for program selection and show that it improves the few-shot performance of pretrained code models on natural-language-to-code tasks. We select output programs from a generated candidate set by marginalizing over program implementations that share the same semantics. Because exact equivalence is intractable, we execute each program on a small number of test inputs to approximate semantic equivalence. Across datasets, execution or simulated execution significantly outperforms the methods that do not involve program semantics. We find that MBR-EXEC consistently improves over all execution-unaware selection methods, suggesting it as an effective approach for natural language to code translation.

pdf bib
Neural Theory-of-Mind? On the Limits of Social Intelligence in Large LMs
Maarten Sap | Ronan Le Bras | Daniel Fried | Yejin Choi
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Social intelligence and Theory of Mind (TOM), i.e., the ability to reason about the different mental states, intents, and reactions of all people involved, allows humans to effectively navigate and understand everyday social interactions. As NLP systems are used in increasingly complex social situations, their ability to grasp social dynamics becomes crucial.In this work, we examine the open question of social intelligence and Theory of Mind in modern NLP systems from an empirical and theorybased perspective. We show that one of today’s largest language models (GPT-3; Brown et al., 2020) lacks this kind of social intelligence out-of-the box, using two tasks: SocialIQa (Sap et al., 2019), which measure models’ ability to understand intents and reactions of participants of social interactions, and ToMi (Le, Boureau, and Nickel, 2019), which measures whether models can infer mental states and realities of participants of situations.Our results show that models struggle substantially at these Theory of Mind tasks, with well-below-human accuracies of 55% and 60% on SocialIQa and ToMi, respectively. To conclude, we draw on theories from pragmatics to contextualize this shortcoming of large language models, by examining the limitations stemming from their data, neural architecture, and training paradigms. Challenging the prevalent narrative that only scale is needed, we posit that person-centric NLP approaches might be more effective towards neural Theory of Mind.

pdf bib
G3: Geolocation via Guidebook Grounding
Grace Luo | Giscard Biamby | Trevor Darrell | Daniel Fried | Anna Rohrbach
Findings of the Association for Computational Linguistics: EMNLP 2022

We demonstrate how language can improve geolocation: the task of predicting the location where an image was taken. Here we study explicit knowledge from human-written guidebooks that describe the salient and class-discriminative visual features humans use for geolocation. We propose the task of Geolocation via Guidebook Grounding that uses a dataset of StreetView images from a diverse set of locations and an associated textual guidebook for GeoGuessr, a popular interactive geolocation game. Our approach predicts a country for each image by attending over the clues automatically extracted from the guidebook. Supervising attention with country-level pseudo labels achieves the best performance. Our approach substantially outperforms a state-of-the-art image-only geolocation method, with an improvement of over 5% in Top-1 accuracy. Our dataset and code can be found at https://github.com/g-luo/geolocation_via_guidebook_grounding.

pdf bib
Inferring Rewards from Language in Context
Jessy Lin | Daniel Fried | Dan Klein | Anca Dragan
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

In classic instruction following, language like “I’d like the JetBlue flight” maps to actions (e.g., selecting that flight). However, language also conveys information about a user’s underlying reward function (e.g., a general preference for JetBlue), which can allow a model to carry out desirable actions in new contexts. We present a model that infers rewards from language pragmatically: reasoning about how speakers choose utterances not only to elicit desired actions, but also to reveal information about their preferences. On a new interactive flight–booking task with natural language, our model more accurately infers rewards and predicts optimal actions in unseen environments, in comparison to past work that first maps language to actions (instruction following) and then maps actions to rewards (inverse reinforcement learning).

pdf bib
Proceedings of the Second Workshop on Understanding Implicit and Underspecified Language
Valentina Pyatkin | Daniel Fried | Talita Anthonio
Proceedings of the Second Workshop on Understanding Implicit and Underspecified Language

2021

pdf bib
Modular Networks for Compositional Instruction Following
Rodolfo Corona | Daniel Fried | Coline Devin | Dan Klein | Trevor Darrell
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Standard architectures used in instruction following often struggle on novel compositions of subgoals (e.g. navigating to landmarks or picking up objects) observed during training. We propose a modular architecture for following natural language instructions that describe sequences of diverse subgoals. In our approach, subgoal modules each carry out natural language instructions for a specific subgoal type. A sequence of modules to execute is chosen by learning to segment the instructions and predicting a subgoal type for each segment. When compared to standard, non-modular sequence-to-sequence approaches on ALFRED, a challenging instruction following benchmark, we find that modularization improves generalization to novel subgoal compositions, as well as to environments unseen in training.

pdf bib
Interactive Assignments for Teaching Structured Neural NLP
David Gaddy | Daniel Fried | Nikita Kitaev | Mitchell Stern | Rodolfo Corona | John DeNero | Dan Klein
Proceedings of the Fifth Workshop on Teaching NLP

We present a set of assignments for a graduate-level NLP course. Assignments are designed to be interactive, easily gradable, and to give students hands-on experience with several key types of structure (sequences, tags, parse trees, and logical forms), modern neural architectures (LSTMs and Transformers), inference algorithms (dynamic programs and approximate search) and training methods (full and weak supervision). We designed assignments to build incrementally both within each assignment and across assignments, with the goal of enabling students to undertake graduate-level research in NLP by the end of the course.

pdf bib
Reference-Centric Models for Grounded Collaborative Dialogue
Daniel Fried | Justin Chiu | Dan Klein
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

We present a grounded neural dialogue model that successfully collaborates with people in a partially-observable reference game. We focus on a setting where two agents each observe an overlapping part of a world context and need to identify and agree on some object they share. Therefore, the agents should pool their information and communicate pragmatically to solve the task. Our dialogue agent accurately grounds referents from the partner’s utterances using a structured reference resolver, conditions on these referents using a recurrent memory, and uses a pragmatic generation procedure to ensure the partner can resolve the references the agent produces. We evaluate on the OneCommon spatial grounding dialogue task (Udagawa and Aizawa 2019), involving a number of dots arranged on a board with continuously varying positions, sizes, and shades. Our agent substantially outperforms the previous state of the art for the task, obtaining a 20% relative improvement in successful task completion in self-play evaluations and a 50% relative improvement in success in human evaluations.

pdf bib
Proceedings of the Second Workshop on Advances in Language and Vision Research
Xin | Ronghang Hu | Drew Hudson | Tsu-Jui Fu | Marcus Rohrbach | Daniel Fried
Proceedings of the Second Workshop on Advances in Language and Vision Research

2020

pdf bib
Syntactic Structure Distillation Pretraining for Bidirectional Encoders
Adhiguna Kuncoro | Lingpeng Kong | Daniel Fried | Dani Yogatama | Laura Rimell | Chris Dyer | Phil Blunsom
Transactions of the Association for Computational Linguistics, Volume 8

Textual representation learners trained on large amounts of data have achieved notable success on downstream tasks; intriguingly, they have also performed well on challenging tests of syntactic competence. Hence, it remains an open question whether scalable learners like BERT can become fully proficient in the syntax of natural language by virtue of data scale alone, or whether they still benefit from more explicit syntactic biases. To answer this question, we introduce a knowledge distillation strategy for injecting syntactic biases into BERT pretraining, by distilling the syntactically informative predictions of a hierarchical—albeit harder to scale—syntactic language model. Since BERT models masked words in bidirectional context, we propose to distill the approximate marginal distribution over words in context from the syntactic LM. Our approach reduces relative error by 2–21% on a diverse set of structured prediction tasks, although we obtain mixed results on the GLUE benchmark. Our findings demonstrate the benefits of syntactic biases, even for representation learners that exploit large amounts of data, and contribute to a better understanding of where syntactic biases are helpful in benchmarks of natural language understanding.

pdf bib
Learning to Segment Actions from Observation and Narration
Daniel Fried | Jean-Baptiste Alayrac | Phil Blunsom | Chris Dyer | Stephen Clark | Aida Nematzadeh
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

We apply a generative segmental model of task structure, guided by narration, to action segmentation in video. We focus on unsupervised and weakly-supervised settings where no action labels are known during training. Despite its simplicity, our model performs competitively with previous work on a dataset of naturalistic instructional videos. Our model allows us to vary the sources of supervision used in training, and we find that both task structure and narrative language provide large benefits in segmentation quality.

2019

pdf bib
Cross-Domain Generalization of Neural Constituency Parsers
Daniel Fried | Nikita Kitaev | Dan Klein
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Neural parsers obtain state-of-the-art results on benchmark treebanks for constituency parsing—but to what degree do they generalize to other domains? We present three results about the generalization of neural parsers in a zero-shot setting: training on trees from one corpus and evaluating on out-of-domain corpora. First, neural and non-neural parsers generalize comparably to new domains. Second, incorporating pre-trained encoder representations into neural parsers substantially improves their performance across all domains, but does not give a larger relative improvement for out-of-domain treebanks. Finally, despite the rich input representations they learn, neural parsers still benefit from structured output prediction of output trees, yielding higher exact match accuracy and stronger generalization both to larger text spans and to out-of-domain corpora. We analyze generalization on English and Chinese corpora, and in the process obtain state-of-the-art parsing results for the Brown, Genia, and English Web treebanks.

pdf bib
Are You Looking? Grounding to Multiple Modalities in Vision-and-Language Navigation
Ronghang Hu | Daniel Fried | Anna Rohrbach | Dan Klein | Trevor Darrell | Kate Saenko
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Vision-and-Language Navigation (VLN) requires grounding instructions, such as “turn right and stop at the door”, to routes in a visual environment. The actual grounding can connect language to the environment through multiple modalities, e.g. “stop at the door” might ground into visual objects, while “turn right” might rely only on the geometric structure of a route. We investigate where the natural language empirically grounds under two recent state-of-the-art VLN models. Surprisingly, we discover that visual features may actually hurt these models: models which only use route structure, ablating visual features, outperform their visual counterparts in unseen new environments on the benchmark Room-to-Room dataset. To better use all the available modalities, we propose to decompose the grounding procedure into a set of expert models with access to different modalities (including object detections) and ensemble them at prediction time, improving the performance of state-of-the-art models on the VLN task.

pdf bib
Pragmatically Informative Text Generation
Sheng Shen | Daniel Fried | Jacob Andreas | Dan Klein
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

We improve the informativeness of models for conditional text generation using techniques from computational pragmatics. These techniques formulate language production as a game between speakers and listeners, in which a speaker should generate output text that a listener can use to correctly identify the original input that the text describes. While such approaches are widely used in cognitive science and grounded language learning, they have received less attention for more standard language generation tasks. We consider two pragmatic modeling methods for text generation: one where pragmatics is imposed by information preservation, and another where pragmatics is imposed by explicit modeling of distractors. We find that these methods improve the performance of strong existing systems for abstractive summarization and generation from structured meaning representations.

2018

pdf bib
Policy Gradient as a Proxy for Dynamic Oracles in Constituency Parsing
Daniel Fried | Dan Klein
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

Dynamic oracles provide strong supervision for training constituency parsers with exploration, but must be custom defined for a given parser’s transition system. We explore using a policy gradient method as a parser-agnostic alternative. In addition to directly optimizing for a tree-level metric such as F1, policy gradient has the potential to reduce exposure bias by allowing exploration during training; moreover, it does not require a dynamic oracle for supervision. On four constituency parsers in three languages, the method substantially outperforms static oracle likelihood training in almost all settings. For parsers where a dynamic oracle is available (including a novel oracle which we define for the transition system of Dyer et al., 2016), policy gradient typically recaptures a substantial fraction of the performance gain afforded by the dynamic oracle.

pdf bib
Unified Pragmatic Models for Generating and Following Instructions
Daniel Fried | Jacob Andreas | Dan Klein
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)

We show that explicit pragmatic inference aids in correctly generating and following natural language instructions for complex, sequential tasks. Our pragmatics-enabled models reason about why speakers produce certain instructions, and about how listeners will react upon hearing them. Like previous pragmatic models, we use learned base listener and speaker models to build a pragmatic speaker that uses the base listener to simulate the interpretation of candidate descriptions, and a pragmatic listener that reasons counterfactually about alternative descriptions. We extend these models to tasks with sequential structure. Evaluation of language generation and interpretation shows that pragmatic inference improves state-of-the-art listener models (at correctly interpreting human instructions) and speaker models (at producing instructions correctly interpreted by humans) in diverse settings.

2017

pdf bib
Effective Inference for Generative Neural Parsing
Mitchell Stern | Daniel Fried | Dan Klein
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing

Generative neural models have recently achieved state-of-the-art results for constituency parsing. However, without a feasible search procedure, their use has so far been limited to reranking the output of external parsers in which decoding is more tractable. We describe an alternative to the conventional action-level beam search used for discriminative neural models that enables us to decode directly in these generative models. We then show that by improving our basic candidate selection strategy and using a coarse pruning function, we can improve accuracy while exploring significantly less of the search space. Applied to the model of Choe and Charniak (2016), our inference procedure obtains 92.56 F1 on section 23 of the Penn Treebank, surpassing prior state-of-the-art results for single-model systems.

pdf bib
Improving Neural Parsing by Disentangling Model Combination and Reranking Effects
Daniel Fried | Mitchell Stern | Dan Klein
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

Recent work has proposed several generative neural models for constituency parsing that achieve state-of-the-art results. Since direct search in these generative models is difficult, they have primarily been used to rescore candidate outputs from base parsers in which decoding is more straightforward. We first present an algorithm for direct search in these generative models. We then demonstrate that the rescoring results are at least partly due to implicit model combination rather than reranking effects. Finally, we show that explicit model combination can improve performance even further, resulting in new state-of-the-art numbers on the PTB of 94.25 F1 when training only on gold data and 94.66 F1 when using external data.

2016

pdf bib
Towards Using Social Media to Identify Individuals at Risk for Preventable Chronic Illness
Dane Bell | Daniel Fried | Luwen Huangfu | Mihai Surdeanu | Stephen Kobourov
Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC'16)

We describe a strategy for the acquisition of training data necessary to build a social-media-driven early detection system for individuals at risk for (preventable) type 2 diabetes mellitus (T2DM). The strategy uses a game-like quiz with data and questions acquired semi-automatically from Twitter. The questions are designed to inspire participant engagement and collect relevant data to train a public-health model applied to individuals. Prior systems designed to use social media such as Twitter to predict obesity (a risk factor for T2DM) operate on entire communities such as states, counties, or cities, based on statistics gathered by government agencies. Because there is considerable variation among individuals within these groups, training data on the individual level would be more effective, but this data is difficult to acquire. The approach proposed here aims to address this issue. Our strategy has two steps. First, we trained a random forest classifier on data gathered from (public) Twitter statuses and state-level statistics with state-of-the-art accuracy. We then converted this classifier into a 20-questions-style quiz and made it available online. In doing so, we achieved high engagement with individuals that took the quiz, while also building a training set of voluntarily supplied individual-level data for future classification.

2015

pdf bib
Higher-order Lexical Semantic Models for Non-factoid Answer Reranking
Daniel Fried | Peter Jansen | Gustave Hahn-Powell | Mihai Surdeanu | Peter Clark
Transactions of the Association for Computational Linguistics, Volume 3

Lexical semantic models provide robust performance for question answering, but, in general, can only capitalize on direct evidence seen during training. For example, monolingual alignment models acquire term alignment probabilities from semi-structured data such as question-answer pairs; neural network language models learn term embeddings from unstructured text. All this knowledge is then used to estimate the semantic similarity between question and answer candidates. We introduce a higher-order formalism that allows all these lexical semantic models to chain direct evidence to construct indirect associations between question and answer texts, by casting the task as the traversal of graphs that encode direct term associations. Using a corpus of 10,000 questions from Yahoo! Answers, we experimentally demonstrate that higher-order methods are broadly applicable to alignment and language models, across both word and syntactic representations. We show that an important criterion for success is controlling for the semantic drift that accumulates during graph traversal. All in all, the proposed higher-order approach improves five out of the six lexical semantic models investigated, with relative gains of up to +13% over their first-order variants.

pdf bib
Low-Rank Tensors for Verbs in Compositional Distributional Semantics
Daniel Fried | Tamara Polajnar | Stephen Clark
Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)