Denis Newman-Griffis


2021

pdf bib
Translational NLP: A New Paradigm and General Principles for Natural Language Processing Research
Denis Newman-Griffis | Jill Fain Lehman | Carolyn Rosé | Harry Hochheiser
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Natural language processing (NLP) research combines the study of universal principles, through basic science, with applied science targeting specific use cases and settings. However, the process of exchange between basic NLP and applications is often assumed to emerge naturally, resulting in many innovations going unapplied and many important questions left unstudied. We describe a new paradigm of Translational NLP, which aims to structure and facilitate the processes by which basic and applied NLP research inform one another. Translational NLP thus presents a third research paradigm, focused on understanding the challenges posed by application needs and how these challenges can drive innovation in basic science and technology design. We show that many significant advances in NLP research have emerged from the intersection of basic principles with application needs, and present a conceptual framework outlining the stakeholders and key questions in translational research. Our framework provides a roadmap for developing Translational NLP as a dedicated research area, and identifies general translational principles to facilitate exchange between basic and applied research.

pdf bib
TextEssence: A Tool for Interactive Analysis of Semantic Shifts Between Corpora
Denis Newman-Griffis | Venkatesh Sivaraman | Adam Perer | Eric Fosler-Lussier | Harry Hochheiser
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Demonstrations

Embeddings of words and concepts capture syntactic and semantic regularities of language; however, they have seen limited use as tools to study characteristics of different corpora and how they relate to one another. We introduce TextEssence, an interactive system designed to enable comparative analysis of corpora using embeddings. TextEssence includes visual, neighbor-based, and similarity-based modes of embedding analysis in a lightweight, web-based interface. We further propose a new measure of embedding confidence based on nearest neighborhood overlap, to assist in identifying high-quality embeddings for corpus analysis. A case study on COVID-19 scientific literature illustrates the utility of the system. TextEssence can be found at https://textessence.github.io.

pdf bib
Introducing Information Retrieval for Biomedical Informatics Students
Sanya Taneja | Richard Boyce | William Reynolds | Denis Newman-Griffis
Proceedings of the Fifth Workshop on Teaching NLP

Introducing biomedical informatics (BMI) students to natural language processing (NLP) requires balancing technical depth with practical know-how to address application-focused needs. We developed a set of three activities introducing introductory BMI students to information retrieval with NLP, covering document representation strategies and language models from TF-IDF to BERT. These activities provide students with hands-on experience targeted towards common use cases, and introduce fundamental components of NLP workflows for a wide variety of applications.

pdf bib
Robust Knowledge Graph Completion with Stacked Convolutions and a Student Re-Ranking Network
Justin Lovelace | Denis Newman-Griffis | Shikhar Vashishth | Jill Fain Lehman | Carolyn Rosé
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Knowledge Graph (KG) completion research usually focuses on densely connected benchmark datasets that are not representative of real KGs. We curate two KG datasets that include biomedical and encyclopedic knowledge and use an existing commonsense KG dataset to explore KG completion in the more realistic setting where dense connectivity is not guaranteed. We develop a deep convolutional network that utilizes textual entity representations and demonstrate that our model outperforms recent KG completion methods in this challenging setting. We find that our model’s performance improvements stem primarily from its robustness to sparsity. We then distill the knowledge from the convolutional network into a student network that re-ranks promising candidate entities. This re-ranking stage leads to further improvements in performance and demonstrates the effectiveness of entity re-ranking for KG completion.

2020

pdf bib
Development of Natural Language Processing Tools to Support Determination of Federal Disability Benefits in the U.S.
Bart Desmet | Julia Porcino | Ayah Zirikly | Denis Newman-Griffis | Guy Divita | Elizabeth Rasch
Proceedings of the 1st Workshop on Language Technologies for Government and Public Administration (LT4Gov)

The disability benefits programs administered by the US Social Security Administration (SSA) receive between 2 and 3 million new applications each year. Adjudicators manually review hundreds of evidence pages per case to determine eligibility based on financial, medical, and functional criteria. Natural Language Processing (NLP) technology is uniquely suited to support this adjudication work and is a critical component of an ongoing inter-agency collaboration between SSA and the National Institutes of Health. This NLP work provides resources and models for document ranking, named entity recognition, and terminology extraction in order to automatically identify documents and reports pertinent to a case, and to allow adjudicators to search for and locate desired information quickly. In this paper, we describe our vision for how NLP can impact SSA’s adjudication process, present the resources and models that have been developed, and discuss some of the benefits and challenges in working with large-scale government data, and its specific properties in the functional domain.

2019

pdf bib
HARE: a Flexible Highlighting Annotator for Ranking and Exploration
Denis Newman-Griffis | Eric Fosler-Lussier
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP): System Demonstrations

Exploration and analysis of potential data sources is a significant challenge in the application of NLP techniques to novel information domains. We describe HARE, a system for highlighting relevant information in document collections to support ranking and triage, which provides tools for post-processing and qualitative analysis for model development and tuning. We apply HARE to the use case of narrative descriptions of mobility information in clinical data, and demonstrate its utility in comparing candidate embedding features. We provide a web-based interface for annotation visualization and document ranking, with a modular backend to support interoperability with existing annotation tools. Our system is available online at https://github.com/OSU-slatelab/HARE.

pdf bib
Writing habits and telltale neighbors: analyzing clinical concept usage patterns with sublanguage embeddings
Denis Newman-Griffis | Eric Fosler-Lussier
Proceedings of the Tenth International Workshop on Health Text Mining and Information Analysis (LOUHI 2019)

Natural language processing techniques are being applied to increasingly diverse types of electronic health records, and can benefit from in-depth understanding of the distinguishing characteristics of medical document types. We present a method for characterizing the usage patterns of clinical concepts among different document types, in order to capture semantic differences beyond the lexical level. By training concept embeddings on clinical documents of different types and measuring the differences in their nearest neighborhood structures, we are able to measure divergences in concept usage while correcting for noise in embedding learning. Experiments on the MIMIC-III corpus demonstrate that our approach captures clinically-relevant differences in concept usage and provides an intuitive way to explore semantic characteristics of clinical document collections.

pdf bib
Characterizing the Impact of Geometric Properties of Word Embeddings on Task Performance
Brendan Whitaker | Denis Newman-Griffis | Aparajita Haldar | Hakan Ferhatosmanoglu | Eric Fosler-Lussier
Proceedings of the 3rd Workshop on Evaluating Vector Space Representations for NLP

Analysis of word embedding properties to inform their use in downstream NLP tasks has largely been studied by assessing nearest neighbors. However, geometric properties of the continuous feature space contribute directly to the use of embedding features in downstream models, and are largely unexplored. We consider four properties of word embedding geometry, namely: position relative to the origin, distribution of features in the vector space, global pairwise distances, and local pairwise distances. We define a sequence of transformations to generate new embeddings that expose subsets of these properties to downstream models and evaluate change in task performance to understand the contribution of each property to NLP models. We transform publicly available pretrained embeddings from three popular toolkits (word2vec, GloVe, and FastText) and evaluate on a variety of intrinsic tasks, which model linguistic information in the vector space, and extrinsic tasks, which use vectors as input to machine learning models. We find that intrinsic evaluations are highly sensitive to absolute position, while extrinsic tasks rely primarily on local similarity. Our findings suggest that future embedding models and post-processing techniques should focus primarily on similarity to nearby points in vector space.

pdf bib
Classifying the reported ability in clinical mobility descriptions
Denis Newman-Griffis | Ayah Zirikly | Guy Divita | Bart Desmet
Proceedings of the 18th BioNLP Workshop and Shared Task

Assessing how individuals perform different activities is key information for modeling health states of individuals and populations. Descriptions of activity performance in clinical free text are complex, including syntactic negation and similarities to textual entailment tasks. We explore a variety of methods for the novel task of classifying four types of assertions about activity performance: Able, Unable, Unclear, and None (no information). We find that ensembling an SVM trained with lexical features and a CNN achieves 77.9% macro F1 score on our task, and yields nearly 80% recall on the rare Unclear and Unable samples. Finally, we highlight several challenges in classifying performance assertions, including capturing information about sources of assistance, incorporating syntactic structure and negation scope, and handling new modalities at test time. Our findings establish a strong baseline for this novel task, and identify intriguing areas for further research.

2018

pdf bib
Embedding Transfer for Low-Resource Medical Named Entity Recognition: A Case Study on Patient Mobility
Denis Newman-Griffis | Ayah Zirikly
Proceedings of the BioNLP 2018 workshop

Functioning is gaining recognition as an important indicator of global health, but remains under-studied in medical natural language processing research. We present the first analysis of automatically extracting descriptions of patient mobility, using a recently-developed dataset of free text electronic health records. We frame the task as a named entity recognition (NER) problem, and investigate the applicability of NER techniques to mobility extraction. As text corpora focused on patient functioning are scarce, we explore domain adaptation of word embeddings for use in a recurrent neural network NER system. We find that embeddings trained on a small in-domain corpus perform nearly as well as those learned from large out-of-domain corpora, and that domain adaptation techniques yield additional improvements in both precision and recall. Our analysis identifies several significant challenges in extracting descriptions of patient mobility, including the length and complexity of annotated entities and high linguistic variability in mobility descriptions.

pdf bib
Jointly Embedding Entities and Text with Distant Supervision
Denis Newman-Griffis | Albert M Lai | Eric Fosler-Lussier
Proceedings of the Third Workshop on Representation Learning for NLP

Learning representations for knowledge base entities and concepts is becoming increasingly important for NLP applications. However, recent entity embedding methods have relied on structured resources that are expensive to create for new domains and corpora. We present a distantly-supervised method for jointly learning embeddings of entities and text from an unnanotated corpus, using only a list of mappings between entities and surface forms. We learn embeddings from open-domain and biomedical corpora, and compare against prior methods that rely on human-annotated text or large knowledge graph structure. Our embeddings capture entity similarity and relatedness better than prior work, both in existing biomedical datasets and a new Wikipedia-based dataset that we release to the community. Results on analogy completion and entity sense disambiguation indicate that entities and words capture complementary information that can be effectively combined for downstream use.

2017

pdf bib
Insights into Analogy Completion from the Biomedical Domain
Denis Newman-Griffis | Albert Lai | Eric Fosler-Lussier
BioNLP 2017

Analogy completion has been a popular task in recent years for evaluating the semantic properties of word embeddings, but the standard methodology makes a number of assumptions about analogies that do not always hold, either in recent benchmark datasets or when expanding into other domains. Through an analysis of analogies in the biomedical domain, we identify three assumptions: that of a Single Answer for any given analogy, that the pairs involved describe the Same Relationship, and that each pair is Informative with respect to the other. We propose modifying the standard methodology to relax these assumptions by allowing for multiple correct answers, reporting MAP and MRR in addition to accuracy, and using multiple example pairs. We further present BMASS, a novel dataset for evaluating linguistic regularities in biomedical embeddings, and demonstrate that the relationships described in the dataset pose significant semantic challenges to current word embedding methods.