Memorizing and utilizing speakers’ personas is a common practice for response generation in long-term conversations. Yet, human-authored datasets often provide uninformative persona sentences that hinder response quality. This paper presents a novel framework that leverages commonsense-based persona expansion to address such issues in long-term conversation.While prior work focuses on not producing personas that contradict others, we focus on transforming contradictory personas into sentences that contain rich speaker information, by refining them based on their contextual backgrounds with designed strategies. As the pioneer of persona expansion in multi-session settings, our framework facilitates better response generation via human-like persona refinement. The supplementary video of our work is available at https://caffeine-15bbf.web.app/.
In this paper, we present RTSum, an unsupervised summarization framework that utilizes relation triples as the basic unit for summarization. Given an input document, RTSum first selects salient relation triples via multi-level salience scoring and then generates a concise summary from the selected relation triples by using a text-to-text language model. On the basis of RTSum, we also develop a web demo for an interpretable summarizing tool, providing fine-grained interpretations with the output summary. With support for customization options, our tool visualizes the salience for textual units at three distinct levels: sentences, relation triples, and phrases. The code, demo, and video are publicly available.
The long-standing goal of dense retrievers in abtractive open-domain question answering (ODQA) tasks is to learn to capture evidence passages among relevant passages for any given query, such that the reader produce factually correct outputs from evidence passages. One of the key challenge is the insufficient amount of training data with the supervision of the answerability of the passages. Recent studies rely on iterative pipelines to annotate answerability using signals from the reader, but their high computational costs hamper practical applications. In this paper, we instead focus on a data-driven approach and propose Evidentiality-Aware Dense Passage Retrieval (EADPR), which leverages synthetic distractor samples to learn to discriminate evidence passages from distractors. We conduct extensive experiments to validate the effectiveness of our proposed method on multiple abstractive ODQA tasks.
Auxiliary function is a helpful component to improve language model’s code generation ability. However, a systematic exploration of how they affect has yet to be done. In this work, we comprehensively evaluate the ability to utilize auxiliary functions encoded in recent code-pretrained language models. First, we construct a human-crafted evaluation set, called HumanExtension, which contains examples of two functions where one function assists the other.With HumanExtension, we design several experiments to examine their ability in a multifaceted way. Our evaluation processes enable a comprehensive understanding of including auxiliary functions in the prompt in terms of effectiveness and robustness. An additional implementation style analysis captures the models’ various implementation patterns when they access the auxiliary function. Through this analysis, we discover the models’ promising ability to utilize auxiliary functions including their self-improving behavior by implementing the two functions step-by-step. However, our analysis also reveals the model’s underutilized behavior to call the auxiliary function, suggesting the future direction to enhance their implementation by eliciting the auxiliary function call ability encoded in the models. We release our code and dataset to facilitate this research direction.
Conversational recommender systems are an emerging area that has garnered increasing interest in the community, especially with the advancements in large language models (LLMs) that enable sophisticated handling of conversational input. Despite the progress, the field still has many aspects left to explore. The currently available public datasets for conversational recommendation lack specific user preferences and explanations for recommendations, hindering high-quality recommendations. To address such challenges, we present a novel conversational recommendation dataset named PEARL, synthesized with persona- and knowledge-augmented LLM simulators. We obtain detailed persona and knowledge from real-world reviews and construct a large-scale dataset with over 57k dialogues. Our experimental results demonstrate that PEARL contains more specific user preferences, show expertise in the target domain, and provides recommendations more relevant to the dialogue context than those in prior datasets. Furthermore, we demonstrate the utility of PEARL by showing that our downstream models outperform baselines in both human and automatic evaluations. We release our dataset and code.
In the task of aspect sentiment quad prediction (ASQP), generative methods for predicting sentiment quads have shown promisingresults. However, they still suffer from imprecise predictions and limited interpretability, caused by data scarcity and inadequate modeling of the quadruplet composition process. In this paper, we propose Self-Consistent Reasoning-based Aspect sentiment quadruple Prediction (SCRAP), optimizing its model to generate reasonings and the corresponding sentiment quadruplets in sequence. SCRAP adopts the Extract-Then-Assign reasoning strategy, which closely mimics human cognition. In the end, SCRAP significantly improves the model’s ability to handle complex reasoning tasks and correctly predict quadruplets through consistency voting, resulting in enhanced interpretability and accuracy in ASQP.
Recent approaches in domain-specific named entity recognition (NER), such as biomedical NER, have shown remarkable advances. However, they still lack of faithfulness, producing erroneous predictions. We assume that knowledge of entities can be useful in verifying the correctness of the predictions. Despite the usefulness of knowledge, resolving such errors with knowledge is nontrivial, since the knowledge itself does not directly indicate the ground-truth label. To this end, we propose VerifiNER, a post-hoc verification framework that identifies errors from existing NER methods using knowledge and revises them into more faithful predictions. Our framework leverages the reasoning abilities of large language models to adequately ground on knowledge and the contextual information in the verification process. We validate effectiveness of VerifiNER through extensive experiments on biomedical datasets. The results suggest that VerifiNER can successfully verify errors from existing models as a model-agnostic approach. Further analyses on out-of-domain and low-resource settings show the usefulness of VerifiNER on real-world applications.
Emotional Support Conversation (ESC) is a task aimed at alleviating individuals’ emotional distress through daily conversation. Given its inherent complexity and non-intuitive nature, ESConv dataset incorporates support strategies to facilitate the generation of appropriate responses. Recently, despite the remarkable conversational ability of large language models (LLMs), previous studies have suggested that they often struggle with providing useful emotional support. Hence, this work initially analyzes the results of LLMs on ESConv, revealing challenges in selecting the correct strategy and a notable preference for a specific strategy. Motivated by these, we explore the impact of the inherent preference in LLMs on providing emotional support, and consequently, we observe that exhibiting high preference for specific strategies hinders effective emotional support, aggravating its robustness in predicting the appropriate strategy. Moreover, we conduct a methodological study to offer insights into the necessary approaches for LLMs to serve as proficient emotional supporters. Our findings emphasize that (1) low preference for specific strategies hinders the progress of emotional support, (2) external assistance helps reduce preference bias, and (3) existing LLMs alone cannot become good emotional supporters. These insights suggest promising avenues for future research to enhance the emotional intelligence of LLMs.
Human-like chatbots necessitate the use of commonsense reasoning in order to effectively comprehend and respond to implicit information present within conversations. Achieving such coherence and informativeness in responses, however, is a non-trivial task. Even for large language models (LLMs), the task of identifying and aggregating key evidence within a single hop presents a substantial challenge. This complexity arises because such evidence is scattered across multiple turns in a conversation, thus necessitating integration over multiple hops. Hence, our focus is to facilitate such multi-hop reasoning over a dialogue context, namely dialogue chain-of-thought (CoT) reasoning. To this end, we propose a knowledge distillation framework that leverages LLMs as unreliable teachers and selectively distills consistent and helpful rationales via alignment filters. We further present DOCTOR, a DialOgue Chain-of-ThOught Reasoner that provides reliable CoT rationales for response generation. We conduct extensive experiments to show that enhancing dialogue agents with high-quality rationales from DOCTOR significantly improves the quality of their responses.
Topic taxonomies display hierarchical topic structures of a text corpus and provide topical knowledge to enhance various NLP applications. To dynamically incorporate new topic information, several recent studies have tried to expand (or complete) a topic taxonomy by inserting emerging topics identified in a set of new documents. However, existing methods focus only on frequent terms in documents and the local topic-subtopic relations in a taxonomy, which leads to limited topic term coverage and fails to model the global taxonomy structure. In this work, we propose a novel framework for topic taxonomy expansion, named TopicExpan, which directly generates topic-related terms belonging to new topics. Specifically, TopicExpan leverages the hierarchical relation structure surrounding a new topic and the textual content of an input document for topic term generation. This approach encourages newly-inserted topics to further cover important but less frequent terms as well as to keep their relation consistency within the taxonomy. Experimental results on two real-world text corpora show that TopicExpan significantly outperforms other baseline methods in terms of the quality of output taxonomies.
Recently, finetuning a pretrained language model to capture the similarity between sentence embeddings has shown the state-of-the-art performance on the semantic textual similarity (STS) task. However, the absence of an interpretation method for the sentence similarity makes it difficult to explain the model output. In this work, we explicitly describe the sentence distance as the weighted sum of contextualized token distances on the basis of a transportation problem, and then present the optimal transport-based distance measure, named RCMD; it identifies and leverages semantically-aligned token pairs. In the end, we propose CLRCMD, a contrastive learning framework that optimizes RCMD of sentence pairs, which enhances the quality of sentence similarity and their interpretation. Extensive experiments demonstrate that our learning framework outperforms other baselines on both STS and interpretable-STS benchmarks, indicating that it computes effective sentence similarity and also provides interpretation consistent with human judgement.
Recent studies on neural networks with pre-trained weights (i.e., BERT) have mainly focused on a low-dimensional subspace, where the embedding vectors computed from input words (or their contexts) are located. In this work, we propose a new approach, called OoMMix, to finding and regularizing the remainder of the space, referred to as out-of-manifold, which cannot be accessed through the words. Specifically, we synthesize the out-of-manifold embeddings based on two embeddings obtained from actually-observed words, to utilize them for fine-tuning the network. A discriminator is trained to detect whether an input embedding is located inside the manifold or not, and simultaneously, a generator is optimized to produce new embeddings that can be easily identified as out-of-manifold by the discriminator. These two modules successfully collaborate in a unified and end-to-end manner for regularizing the out-of-manifold. Our extensive evaluation on various text classification benchmarks demonstrates the effectiveness of our approach, as well as its good compatibility with existing data augmentation techniques which aim to enhance the manifold.