Distorted science communication harms individuals and society as it can lead to unhealthy behavior change and decrease trust in scientific institutions. Given the rapidly increasing volume of science communication in recent years, a fine-grained understanding of how findings from scientific publications are reported to the general public, and methods to detect distortions from the original work automatically, are crucial. Prior work focused on individual aspects of distortions or worked with unpaired data. In this work, we make three foundational contributions towards addressing this problem: (1) annotating 1,600 instances of scientific findings from academic papers paired with corresponding findings as reported in news articles and tweets wrt. four characteristics: causality, certainty, generality and sensationalism; (2) establishing baselines for automatically detecting these characteristics; and (3) analyzing the prevalence of changes in these characteristics in both human-annotated and large-scale unlabeled data. Our results show that scientific findings frequently undergo subtle distortions when reported. Tweets distort findings more often than science news reports. Detecting fine-grained distortions automatically poses a challenging task. In our experiments, fine-tuned task-specific models consistently outperform few-shot LLM prompting.
Whether the media faithfully communicate scientific information has long been a core issue to the science community. Automatically identifying paraphrased scientific findings could enable large-scale tracking and analysis of information changes in the science communication process, but this requires systems to understand the similarity between scientific information across multiple domains. To this end, we present the SCIENTIFIC PARAPHRASE AND INFORMATION CHANGE DATASET (SPICED), the first paraphrase dataset of scientific findings annotated for degree of information change. SPICED contains 6,000 scientific finding pairs extracted from news stories, social media discussions, and full texts of original papers. We demonstrate that SPICED poses a challenging task and that models trained on SPICED improve downstream performance on evidence retrieval for fact checking of real-world scientific claims. Finally, we show that models trained on SPICED can reveal large-scale trends in the degrees to which people and organizations faithfully communicate new scientific findings. Data, code, and pre-trained models are available at http://www.copenlu.com/publication/2022_emnlp_wright/.
Automated scientific fact checking is difficult due to the complexity of scientific language and a lack of significant amounts of training data, as annotation requires domain expertise. To address this challenge, we propose scientific claim generation, the task of generating one or more atomic and verifiable claims from scientific sentences, and demonstrate its usefulness in zero-shot fact checking for biomedical claims. We propose CLAIMGEN-BART, a new supervised method for generating claims supported by the literature, as well as KBIN, a novel method for generating claim negations. Additionally, we adapt an existing unsupervised entity-centric method of claim generation to biomedical claims, which we call CLAIMGEN-ENTITY. Experiments on zero-shot fact checking demonstrate that both CLAIMGEN-ENTITY and CLAIMGEN-BART, coupled with KBIN, achieve up to 90% performance of fully supervised models trained on manually annotated claims and evidence. A rigorous evaluation study demonstrates significant improvement in generated claim and negation quality over existing baselines
Public trust in science depends on honest and factual communication of scientific papers. However, recent studies have demonstrated a tendency of news media to misrepresent scientific papers by exaggerating their findings. Given this, we present a formalization of and study into the problem of exaggeration detection in science communication. While there are an abundance of scientific papers and popular media articles written about them, very rarely do the articles include a direct link to the original paper, making data collection challenging, and necessitating the need for few-shot learning. We address this by curating a set of labeled press release/abstract pairs from existing expert annotated studies on exaggeration in press releases of scientific papers suitable for benchmarking the performance of machine learning models on the task. Using limited data from this and previous studies on exaggeration detection in science, we introduce MT-PET, a multi-task version of Pattern Exploiting Training (PET), which leverages knowledge from complementary cloze-style QA tasks to improve few-shot learning. We demonstrate that MT-PET outperforms PET and supervised learning both when data is limited, as well as when there is an abundance of data for the main task.
Adversarial attacks reveal important vulnerabilities and flaws of trained models. One potent type of attack are universal adversarial triggers, which are individual n-grams that, when appended to instances of a class under attack, can trick a model into predicting a target class. However, for inference tasks such as fact checking, these triggers often inadvertently invert the meaning of instances they are inserted in. In addition, such attacks produce semantically nonsensical inputs, as they simply concatenate triggers to existing samples. Here, we investigate how to generate adversarial attacks against fact checking systems that preserve the ground truth meaning and are semantically valid. We extend the HotFlip attack algorithm used for universal trigger generation by jointly minimizing the target class loss of a fact checking model and the entailment class loss of an auxiliary natural language inference model. We then train a conditional language model to generate semantically valid statements, which include the found universal triggers. We find that the generated attacks maintain the directionality and semantic validity of the claim better than previous work.
In practical machine learning settings, the data on which a model must make predictions often come from a different distribution than the data it was trained on. Here, we investigate the problem of unsupervised multi-source domain adaptation, where a model is trained on labelled data from multiple source domains and must make predictions on a domain for which no labelled data has been seen. Prior work with CNNs and RNNs has demonstrated the benefit of mixture of experts, where the predictions of multiple domain expert classifiers are combined; as well as domain adversarial training, to induce a domain agnostic representation space. Inspired by this, we investigate how such methods can be effectively applied to large pretrained transformer models. We find that domain adversarial training has an effect on the learned representations of these models while having little effect on their performance, suggesting that large transformer-based models are already relatively robust across domains. Additionally, we show that mixture of experts leads to significant performance improvements by comparing several variants of mixing functions, including one novel metric based on attention. Finally, we demonstrate that the predictions of large pretrained transformer based domain experts are highly homogenous, making it challenging to learn effective metrics for mixing their predictions.
As the first step of automatic fact checking, claim check-worthiness detection is a critical component of fact checking systems. There are multiple lines of research which study this problem: check-worthiness ranking from political speeches and debates, rumour detection on Twitter, and citation needed detection from Wikipedia. To date, there has been no structured comparison of these various tasks to understand their relatedness, and no investigation into whether or not a unified approach to all of them is achievable. In this work, we illuminate a central challenge in claim check-worthiness detection underlying all of these tasks, being that they hinge upon detecting both how factual a sentence is, as well as how likely a sentence is to be believed without verification. As such, annotators only mark those instances they judge to be clear-cut check-worthy. Our best performing method is a unified approach which automatically corrects for this using a variant of positive unlabelled learning that finds instances which were incorrectly labelled as not check-worthy. In applying this, we out-perform the state of the art in two of the three tasks studied for claim check-worthiness detection in English.